Math, asked by ramachandrachandra18, 11 months ago

If the polynomialx^4+2x^3+8x^2+12x+18 is divided by another polynomial x^2+5,the remainder comes out to be px+q,find the value of p & q

Answers

Answered by shadowsabers03
2

Here the polynomial f(x)=x^4+2x^3+8x^2+12x+18 is divided by the polynomial x^2+5, so we have to express f(x) in the form g(x)\cdot(x^2+5)+px+q where g(x) is for some second degree polynomial (the quotient) and px+q is the remainder.

\longrightarrow f(x)=g(x)\cdot(x^2+5)+(px+q)\quad\quad\dots(1)

Then,

\longrightarrow f(x)=x^4+2x^3+8x^2+12x+18

Taking 8x^2=5x^2+3x^2,\ 12x=10x+2x and 18=15+3,

\longrightarrow f(x)=x^4+2x^3+5x^2+3x^2+10x+2x+15+3

Or,

\longrightarrow f(x)=x^4+5x^2+2x^3+10x+3x^2+15+2x+3

\longrightarrow f(x)=x^2(x^2+5)+2x(x^2+5)+3(x^2+5)+(2x+3)

\longrightarrow f(x)=(x^2+2x+3)(x^2+5)+(2x+3)\quad\quad\dots(2)

From (1) and (2),

\longrightarrow px+q=2x+3

Thus we get,

\longrightarrow\underline{\underline{p=2}}

\longrightarrow\underline{\underline{q=3}}

Similar questions
Math, 1 year ago