if the position vector of a particle is given by r = (4cos 2t)i+(4sin2t)j+(6t)k m calculate its acc. at t=x/4
Answers
Answered by
47
Hii There!!!
Given, r = (4cos 2t) i + (4sin2t) j + (6t)k
〽 Since, velocity 【v 】 = dr/dt
So, dr/dt = d/dt [ ( 4cos 2t) i + ( 4sin 2t ) j+ (6t) k]
=> (-8sin2t) i+(8cos2t) j+6k
〽Now, acceleration, 【a】 = dv/dt
dv/dt = d/dt [ ( -8sin 2t ) i + ( 8 cos 2t ) j + 6k ]
=> [ ( -16 cos 2t ) i - ( 16 sin 2t ) j
On putting t = x/4 we get ;
a = [ (-16cos 2x/4) i - (16sin 2x/4) j ]
=> [ (-16cos x/2) i - (16sin x/2)j ]
=> [ -16 (cos x/2 i+sin x/2 j) ]
Hence, acceleration = [ -16 (cos x/2 i+sin x/2 j) ]
_________________________
Hope it helps✌
# $'¢ #
Given, r = (4cos 2t) i + (4sin2t) j + (6t)k
〽 Since, velocity 【v 】 = dr/dt
So, dr/dt = d/dt [ ( 4cos 2t) i + ( 4sin 2t ) j+ (6t) k]
=> (-8sin2t) i+(8cos2t) j+6k
〽Now, acceleration, 【a】 = dv/dt
dv/dt = d/dt [ ( -8sin 2t ) i + ( 8 cos 2t ) j + 6k ]
=> [ ( -16 cos 2t ) i - ( 16 sin 2t ) j
On putting t = x/4 we get ;
a = [ (-16cos 2x/4) i - (16sin 2x/4) j ]
=> [ (-16cos x/2) i - (16sin x/2)j ]
=> [ -16 (cos x/2 i+sin x/2 j) ]
Hence, acceleration = [ -16 (cos x/2 i+sin x/2 j) ]
_________________________
Hope it helps✌
# $'¢ #
Answered by
14
Explanation:
hope it's help you .............
Attachments:
Similar questions