Physics, asked by ali201823, 7 months ago

If the potential is V(x) = 2xy2, then the Y-component of electric Field is: Select one: a. -4xy b. 4y c. -2xy2 d. +4xy e. -2y2

Answers

Answered by nirman95
6

Given:

The potential is V(x) = 2xy².

To find:

Y component of Electrostatic Field Intensity.

Calculation:

Y component of Electrostatic Field Intensity can be calculated by finding out the partial derivative of the Electrostatic Potential with respect to y ;

 \therefore \: V = 2x {y}^{2}

 =  > \vec{ E} = -   \dfrac{ \partial V}{ \partial y} \:  \hat{j}

 =  > \vec{ E} = -   \dfrac{ \partial (2x {y}^{2}) }{ \partial y} \:  \hat{j}

Performing partial derivative ;

 =  > \vec{ E} =  -  (4xy)\:  \hat{j}

So, final answer is :

 \boxed{ \sf{ \large{ \red{\vec{ E} =  -  (4xy)\:  \hat{j}}}}}

Note:

  • While performing partial derivative w.r.t a variable , consider the other variables to be constant .
Answered by pulakmath007
40

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If V is electric potential then Electric Field is given by

 \displaystyle \:  \sf{ \: \vec{E} \:  =  -  \bigg( \frac{ \partial V\: }{ \partial x}  \hat{i}   +  \frac{ \partial V\: }{ \partial y}  \hat{j}   +\frac{ \partial V\: }{ \partial z}  \hat{k}   \: \bigg) }

GIVEN

If the potential is

 \sf{V(x) = 2x {y}^{2} }

TO DETERMINE

The electric field

CALCULATION

Here

 \sf{V(x) = 2x {y}^{2} }

Now

 \displaystyle \:  \sf{ \:   \frac{ \partial V\: }{ \partial x}  = 2 {y}^{2} }

 \displaystyle \:  \sf{ \:   \frac{ \partial V\: }{ \partial y}  = 4xy}

 \displaystyle \:  \sf{ \:   \frac{ \partial V\: }{ \partial z}  = 0}

Hence the electric field is

 \displaystyle \:  \sf{ \: \vec{E} \:  =  -  \bigg(2 {y}^{2} \:    \hat{i}   +  4xy \:   \hat{j}   +0 \:   \hat{k}   \: \bigg) }

RESULT

\boxed{ \sf{ \: Y - component  \: of \:  electric \:  Field \:  is  \:  =   - \: 4xy  \:  \hat{j}\: }}

Similar questions