Math, asked by iqra39, 2 months ago

If the prime factorization of 784 is in the form of 2p-7q,then find the value of p+q​

Answers

Answered by mathdude500
1

Appropriate Question :-

If the prime factorization of 784 is in the form of

 \sf \:  {2}^{p} {7}^{q}, \: find \: the \: value \: of \: p + q

\large\underline{\sf{Solution-}}

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 784}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:784\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:392\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:196\: \:\:}}\\{\underline{\sf{2}}}&{\underline{\sf{\:\:98\:\:\:}}} \\{\underline{\sf{7}}}&{\underline{\sf{\:\:49\:\:\:}}}  \\ {\underline{\sf{7}}}&{\underline{\sf{\:\:7\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 784  = {2}^{4} \times  {7}^{2}  }

It is given that,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 784  = {2}^{p} \times  {7}^{q}  }

So, it implies,

\rm :\longmapsto\: {2}^{p} \times  {7}^{q} =  {2}^{4} \times  {7}^{2}

So, on comparing we get

 \red{\rm :\longmapsto\:p = 4} \\  \red{\rm :\longmapsto\:q = 2}

Therefore,

\bf :\longmapsto\:p + q = 4 + 2 = 6

Additional Information :-

Fundamental Theorem of Arithmetic :-

  • This theorem states that : Every composite number can be factorized as a product of primes and this factorization is unique irrespective of their places.

Euclid Division Lemma :-

  • Let a and b are positive integers such that a > b, then their exist integers q and r such that a = bq + r, where r belongs to [0, b).

Similar questions