Math, asked by san661999, 7 months ago

if the principal is ₹48,000, time is 3 years and the simple interest is ₹420, then find the rate of interest...

Kindly answer it as fast as you can one who will answer first l will mark him/her brainliest...

And kindly follow me too if you want to...​

Answers

Answered by prince5132
36

GIVEN :-

  • Principal , P = Rs. 48000.
  • Time , T = 3 years.
  • Simple Interest , S.I = Rs. 420.

TO FIND :-

  • Rate % , R = ?

SOLUTION :-

 \\   \red \bigstar \:  \underline{ \boxed{\displaystyle \tt \: Rate \%  = \dfrac{S.I \times 100}{P \times T}}} \\  \\

\orange \bigstar  \purple{  \displaystyle \: \tt \:  \: Substitute \:  all \:  the \:  given  \: values \: } \\  \\

 : \implies \displaystyle \tt \: Rate \%  = \dfrac{42 \cancel0 \times  \cancel{100}}{48 \cancel{000} \times 3} \\  \\

 : \implies \displaystyle \tt \: Rate \% =   \dfrac{42}{3 \times 48}  \\  \\

 : \implies \displaystyle \tt \: Rate \% =   \dfrac{42}{144}  \\  \\

   \red \bigstar \:  \underline{ \boxed{\displaystyle \tt \: Rate \%  = 0.29 \: \%}} \\ \\

 \therefore \underline{ \displaystyle \tt \: Required  \: Rate  \: \% \:  is  \: 0.29\:. } \\ \\

ADDITIONAL INFORMATION :-

  \red{ \underline{\bf Some Formulae}} \\ \\  :\implies \quad \tt P =  \dfrac{100 \times S.I}{R \times T}  \\  \\  \\  : \implies \quad \tt T =  \dfrac{100 \times S.I}{P \times R}  \\  \\  \\  : \implies \quad \tt R =  \dfrac{100 \times S.I}{P \times T}  \\  \\  \\ : \implies \quad  \tt A = P + S.I \\  \\  \\ :  \implies \quad  \tt S.I =  \dfrac{P \times R \times T}{100}\\

Answered by Anonymous
42

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow PRINCIPAL(p)= \₹ 48000

\sf\dashrightarrow TIME (t)= 3years

\sf\dashrightarrow SIMPLE\: INTEREST (S.I)= \₹ 420

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow RATE\:\%(percent)

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: rate\% = \dfrac{ (S.I) \times 100}{ (principal) \times (time)} \:\: \star}}}

\large\underline\bold{SOLUTION}

\sf\therefore rate\% = \dfrac{ (S.I) \times 100}{ (principal) \times (time)}

\sf\dashrightarrow rate\%= \dfrac{ 420\: \times 100}{ 48000 \times 3}

\sf\implies  \dfrac{ 420\: \times \cancel{100}}{ 480\:\times \cancel{100} \times 3}

\sf\implies \dfrac{420}{480 \times 3}

\sf\implies \dfrac{42\: \times \cancel{10}}{48\:\:\times  \cancel{10} \times 3}

\sf\implies \dfrac{\cancel{42}}{ 48 \times \cancel{3}}

\sf\implies \dfrac{14}{48}

\sf\implies \cancel\dfrac{14}{48}

\sf\implies 0.297

\large{\boxed{\bf{ \star\:\: THE\:REQUIRED\:RATE\:\%= 0.297\:\: \star}}}

\large\underline\bold{THE\:REQUIRED\:RATE\:\%\:IS\:0.297}

_________________

Similar questions