Math, asked by RUTALABUKUSA, 1 year ago

If the product of the roots of the equation (a + 1)x2 + (2a + 3)x + (3a + 4) = 0 be 2, then the sum of roots​

Answers

Answered by Anonymous
23

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{{\underline{\underline{\huge\mathcal{...Answer...}}}}}}

\large\mathcal\red{solution}

(a + 1)x {}^{2}  + (2a + 3)x + (3a + 4) = 0 \\   =  > x {}^{2}  +  \frac{(2a + 3)}{(a + 1)} x +  \frac{(3a + 4)}{(a + 1)}  = 0 \\  =  the \: product \: of \: the \: equation \: is \: 2 \\  therefore ........\\ = >   \frac{(3a + 4)}{(a + 1)}  = 2 \\  =  > 3a + 4 = 2a + 2 \\  =  > a =   - 2 \\   \\ now \: the \: sum \: of \: the \: equation \: is \:  \:  \:  \\  =  \frac{-(2a + 3)}{(a + 1)}  \\  =  -\frac{2( - 2) + 3}{ - 2 + 1}  \\  =   -\frac{ - 4 + 3}{ - 1}  \\  =  -\frac{ - 1}{ - 1}  \\  = -1

the sum of roots of the equation is =-1

\underline{\large\mathcal\red{hope\: this \: helps \:you......}}

Similar questions