Math, asked by 4747, 2 months ago

If the product of the zeroes of the polynomial ax³-3x²+4x-6 is 6.
find the value of a.

Answers

Answered by VanditaNegi
5

\huge{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{purple}{\bf{\color{white}{Answer :-}}}}}

p(x) = ax³ -3x² + 4x - 6

 \alpha  \beta  =  \frac{c}{a}  \\  \\ 6 =  \frac{4}{a}  \\   \\ a \:  =  \frac{2}{3}

Answered by SweetestBitter
74

__________________________

\huge \mathbb\fcolorbox{black}{lavenderblush}{Answer : ♡}

__________________________

GIVEN :

➳ p(x) = ax³ - 3x² + 4x - 6

➳ Product of zeros : αβ = 6

PRODUCT OF ZEROS :

The product of zeros α and β is given as :

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\ ➳αβ= \:  \frac{c}{a} ::}}}\mid}}}\\\\\end{gathered}

p(x) = ax³ - 3x² + 4x - 6

General equation : ax³ + bx² + cx + d

Equating p(x) with general equations :

  • a = a
  • b = -3
  • c = 4
  • d = -6

Therefore, the Product of zeros c/a :

αβ = 6

c/a = 6

4/a = 6 (as αβ = c/a)

a = 4/6

 \boxed{a = 2/3}

__________________________

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\\end{gathered}

\begin{gathered}\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}} \end{gathered}

__________________________

Similar questions