Math, asked by kausher333alinke, 8 months ago

if the product of two zeroes of the polynomial of f(x) =2x^3+6x^2-4x +9 is then its third zero is​

Answers

Answered by Anonymous
13

 \bf \huge{ \underline{ \underline{ \blue{Question : -  }}}}

if the product of two zeroes of the polynomial of f(x) =2x^3+6x^2-4x +9 is 3 then its third zero is

 \bf \huge{ \underline{ \underline{ \blue{Answer :  - }}}}

 \tt \large \: p(x) =  {2x}^{3}  +  {6x}^{2}  - 4x + 9

 \bf \large{ \underline{ \underline{ \red{Given :  - }}}}

 \tt \star \: let \:  \:  \alpha , \beta , \gamma  \:  \: be \:  \: the \:  \: 3 \:  \: roots \:  \:  \\  \\ \tt \star \alpha  \beta  = 3

we know that,

  • a=2
  • b=6
  • c=-4
  • d=9

 \tt \large \:  \: find \:  \: the \:  \: products \:  \: of \:  \: all \:  \: zeroes \:  \:  \\  \bf \:  \alpha  \beta  \gamma  =  \frac{ - d}{a}  =  \frac{ - 9}{2}

 \tt \:  \: third \:  \: zeroes \:  \\  \\  \tt \: given \:  \: that \:  \: ( \alpha  \beta  = 6) \\  \\  \sf \large \implies \: 3 \gamma  =  \frac{ - 9}{2}  \\ \\  \sf \large \implies \:  \gamma  =  \frac{ \frac{ - 9}{2} }{3}  \\  \\ \sf \large \implies \:  \gamma  =  \frac{ - 9}{3 \times 2}  \\  \\ \sf \large \implies \:  \gamma  =  \frac{ - 9}{6}  \\  \\ \sf \large \implies \:  \gamma  =  \frac{ - 3}{2}

Third zero is -3/2

Similar questions