Math, asked by mahendrawagela96, 5 months ago

If the product of zeroes of the quadratic polynomial Mx

2

-4x+6 is 6, then find the value of M.​

Answers

Answered by apparaosurapu2847
1

Step-by-step explanation:

-4x+6=6

-4x=0

x=0/-4=0

m=0

Answered by NewGeneEinstein
4

Step-by-step explanation:

Given:-

Product of the zeros of a quadratic polynomial \sf Mx^2-4x+6 is 6

To find:-

Value of M

Solution:-

Let the zeros of the polynomial be \sf \alpha \:,\;\beta

Here,

  • a=M
  • b=-4
  • c=6

As we know that

\boxed{\sf product\:of\:zeros (\alpha\beta)=\dfrac {-c}{a}}

ATQ,

\\ \qquad\qquad\sf:\longmapsto \alpha\beta=6

\\ \qquad\qquad\sf:\longmapsto \dfrac {-c}{a}=6

\\ \qquad\qquad\sf:\longmapsto \dfrac {6}{M}=6

\\ \qquad\qquad\sf:\longmapsto {6M=6}

\\ \qquad\qquad\sf:\longmapsto M=\dfrac {6}{6}

\\ \qquad\qquad\sf:\longmapsto M=1

\\\\

\therefore \underline{\underline{\sf M=1.}}

Similar questions