Math, asked by bhumithescholar, 9 months ago

if the pth term of an A.P. is 1/q and the qth term is is 1/p , prove that the sum of the first pq terms is 1/2[pq+1]​

Answers

Answered by techayush
12

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R:-}}}}

Given pth term = 1/q

a + (p - 1)d = 1/q

aq + (pq - q)d = 1  --- (1)

Similarly, 

 ap + (pq - p)d = 1  --- (2)

From (1) and (2), we get

aq + (pq - q)d = ap + (pq - p)d 

aq - ap = d[pq - p - pq + q]

a(q - p) = d(q - p)

Therefore, a = d

Equation (1) becomes,

dq + pqd - dq = 1  

d = 1/pq

Hence a = 1/pq

Consider, Spq = (pq/2)[2a + (pq - 1)d]

                        = (pq/2)[2(1/pq) + (pq - 1)(1/pq)]

        

                        = (1/2)[2 + pq - 1]

         

                        = (1/2)[pq + 1]

____________________________________________________

♥️Please mark it as♥️

\huge\underline\mathcal\red{Brainliest}

Answered by Potato4Lyf
27

Given pth term = 1/q

a + (p - 1)d = 1/q

aq + (pq - q)d = 1  --- (1)

Similarly, 

ap + (pq - p)d = 1  --- (2)

From (1) and (2), we get

aq + (pq - q)d = ap + (pq - p)d 

aq - ap = d[pq - p - pq + q]

a(q - p) = d(q - p)

Therefore, a = d

Equation (1) becomes,

dq + pqd - dq = 1  

d = 1/pq

Hence a = 1/pq

Consider, Spq = (pq/2)[2a + (pq - 1)d]

                       = (pq/2)[2(1/pq) + (pq - 1)(1/pq)]

                       = (1/2)[2 + pq - 1]

                       = (1/2)[pq + 1]

Please mark as brainliest!!!!!! :D

Similar questions