Math, asked by kingz5091, 1 year ago

If the pth term of an A.P. is q and the qth term of an A.P. is p, show that its nth term is (p+q-n).

Answers

Answered by Tanushree26
14
ap = q
a+(p-1)d =q
a+dp - d=q.... 1
aq=p
a+(q-1)d=p
a+dq - d=p.... 2
Subtracting 1 n 2
d=-1
Now putting the value of d in eq -1
a+(p-1)-1=q
a-p+1=q
a=p+q-1
Now nth term = a+(n-1)d
p+q-1+(n-1)-1
=p+q-1-n+1
p+q-n (proved)
Answered by Anonymous
4

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{❢◥ ▬▬▬▬▬▬ ◆ ▬▬▬▬▬▬ ◤❢}}}}}}}

Similar questions