Math, asked by tanushka625, 11 months ago

If the pth term of an Ap is q and qth term of an Apis p, prove that its nth term is (p+q-n)​

Answers

Answered by Rynax
1

Answer:

Hii

Here. Is your answere.

Attachments:
Answered by Anonymous
0

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: a \: be \: the \: first \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: nth \: term \: of \: ap \\ t _{p} = a + (p - 1)d \:  \: and \: t _{q}  = a + (q - 1)d \\ now \: t _{p } = q \: and \: t _{q} = p \\  \therefore \: a + (p - 1)d = q \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... .(1) \\ and \: a + (q - 1)d = p \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .. ..  (2) \\  \\  \\  on \: subtracting \: (1)from(2) \: we \: get \\ (q - p)d = (p - q) \implies \: d =  - 1 \\ putting \: d =  - 1 \: in \: (1) \: we \: get \: a = (p + q  - 1) \\  \therefore \: nth \: term \:  = a(n - 1)d = (p + q - 1) + (n - 1)( - 1) = (p + q - n) \\  \\ hence \: nth \: term \:  = (p + q - n)

{\huge{\underline{\underline{\underline{\orange{\mathtt{here\:is\:your\:answer》》》}}}}}}}

Similar questions