Math, asked by khyodabamang8285, 9 months ago

If the qth term of an ap is 1/Pand Qth term is 1/p ,prove that the sum of its first PQ terms is 1/2 P + q

Answers

Answered by Anonymous
9

\mathfrak{\huge{\green{\underline{\underline{ANSWER :}}}}}

Given pth term = 1/q

a + (p - 1)d = 1/q

aq + (pq - q)d = 1  --- (1)

Similarly, 

 ap + (pq - p)d = 1  --- (2)

From (1) and (2), we get

aq + (pq - q)d = ap + (pq - p)d 

aq - ap = d[pq - p - pq + q]

a(q - p) = d(q - p)

Therefore, a = d

Equation (1) becomes,

dq + pqd - dq = 1  

d = 1/pq

Hence a = 1/pq

Consider, Spq = (pq/2)[2a + (pq - 1)d]

                        = (pq/2)[2(1/pq) + (pq - 1)(1/pq)]

        

                        = (1/2)[2 + pq - 1]

         

                        = (1/2)[pq + 1]

<marquee>Hope It Will Help.❤

Similar questions