Math, asked by ItzYuvrajGupta, 7 months ago

If the quadratic equation (1+a²)b²x²+ 2abcx + (c²-m²)=0 in x has equal roots, prove that c² = m² ( 1 + a²).​

Answers

Answered by MaIeficent
11

Step-by-step explanation:

Given:-

  • A quadratic equation (1+a²)b²x²+ 2abcx + (c²-m²) = 0.

  • The roots of the equation are real and equal.

To Prove:-

  • c² = m² ( 1 + a²)

Proof:-

For a quadratic equation ax² + bx + c = 0

If the roots of the equation are equal then:-

\longrightarrow\boxed{ \bf b^2 - 4ac = 0}

Comparing (1+a²)b²x²+ 2abcx + (c²-m²) with ax² + bx + c

• a = 1 + a²

• b = 2abc

• c = c² - m²

\sf\longrightarrow b^2 - 4ac = 0

\sf\longrightarrow (2abc)^{2}  - 4 \times  \big[ (1 +  {a)}^{2} {b}^{2} \big]\times  ( {c}^{2} -  {m}^{2})   = 0

\sf\longrightarrow4 {a}^{2}  {b}^{2} {c}^{2}  - 4 ( {b}^{2} +  {a}^{2} {b}^{2})( {c}^{2} -  {m}^{2})   = 0

\sf\longrightarrow\cancel4{a}^{2}  {b}^{2} {c}^{2}   = \cancel4 ( {b}^{2} +  {a}^{2} {b}^{2})( {c}^{2} -  {m}^{2})

\sf\longrightarrow{a}^{2}  {b}^{2} {c}^{2}   = ( {b}^{2} +  {a}^{2} {b}^{2})( {c}^{2} -  {m}^{2})

\sf\longrightarrow{a}^{2}  {b}^{2} {c}^{2}   = {b}^{2} {c}^{2}  -  {b}^{2} {m}^{2} +  {a}^{2} {b}^{2}{c}^{2} -   {a}^{2}  {b}^{2} {m}^{2}

\sf\longrightarrow{a}^{2}  {b}^{2} {c}^{2}  -  {a}^{2}  {b}^{2} {c}^{2}  = {b}^{2} {c}^{2}  -  {b}^{2} {m}^{2}-   {a}^{2}  {b}^{2} {m}^{2}

\sf\longrightarrow {b}^{2} {c}^{2}  -  {b}^{2} {m}^{2}-   {a}^{2}  {b}^{2} {m}^{2} = 0

\sf\longrightarrow {b}^{2} ({c}^{2}  -   {m}^{2}-   {a}^{2}  {m}^{2}) = 0

\sf\longrightarrow {c}^{2}  -   {m}^{2}- {a}^{2}  {m}^{2}= 0

\sf\longrightarrow {c}^{2}  -   {m}^{2}(1+{a}^{2})= 0

\sf\dashrightarrow \underline{\boxed{\bf\therefore {c}^{2}  -   {m}^{2}(1+{a}^{2})= 0}}

\sf \underline{Hence, \: Proved}

Points to be remembered while solving this kinda problems:-

For a quadratic equation ax² + bx + c = 0

If the roots are real and distinct then.

  • b² - 4ac > 0

If the roots are real and equal

  • b² - 4ac = 0

If the roots are imaginary.

  • b² - 4ac < 0
Similar questions