Math, asked by ItzYuvrajGupta, 7 months ago

If the quadratic equation (1+a²)b²x²+ 2abcx + (c²-m²)=0 in x has equal roots, prove that
c² = m² ( 1 + a²).

Answers

Answered by govindareddy03
0

Answer:

quadratic equation (1 + a^2)b^2\text { x}^2 + 2abc \text { x }+ (c^2 - m^2) = 0(1+a

2

)b

2

x

2

+2abc x +(c

2

−m

2

)=0

To prove: c^2=m^2(1+a^2)c

2

=m

2

(1+a

2

)

Step-by-step explanation:

As we know

Ax^2+Bx+C=0Ax

2

+Bx+C=0 is the general quadratic equation

As D=B^2-4ACD=B

2

−4AC where D is discriminant

D=0 when the quadratic equation has equal roots

So we get

\begin{gathered}A= (1+a^2)b^2\\\\B=2abc\\\\C=c^2-m^2\end{gathered}

A=(1+a

2

)b

2

B=2abc

C=c

2

−m

2

So

D= (2abc)^2-4(1+a^2)b^2(c^2-m^2)D=(2abc)

2

−4(1+a

2

)b

2

(c

2

−m

2

)

Roots are equal therefore D= 0

\begin{gathered}4a^2b^2c^2-4(1+a^2)b^2(c^2-m^2)=0\\\\\Rightarrow 4b^2(a^2c^2-(1+a^2)(c^2-m^2))=0\\\\\Rightarrow (a^2c^2-c^2-a^2c^2+m^2=m^2a^2))=0\\\\\Rightarrow -c^2+m^2+m^2a^2=0\\\\\Rightarrow c^2=m^2a^2+m^2\\\\\Rightarrow c^2=m^2(1+a^2)\end{gathered}

4a

2

b

2

c

2

−4(1+a

2

)b

2

(c

2

−m

2

)=0

⇒4b

2

(a

2

c

2

−(1+a

2

)(c

2

−m

2

))=0

⇒(a

2

c

2

−c

2

−a

2

c

2

+m

2

=m

2

a

2

))=0

⇒−c

2

+m

2

+m

2

a

2

=0

⇒c

2

=m

2

a

2

+m

2

⇒c

2

=m

2

(1+a

2

)

Similar questions