if the quadratic equation(1+m^2)x^2+2mcx+c^2-a^2=0 has equal roots prove that c^2=a^2(1+m^2)
Answers
Answered by
2
Quadratic Equation = ( 1 + m² ) x² + ( 2 mc ) x + c² - a² = 0
Coefficients of x² ( a ) = ( 1 + m² )
Coefficients of x ( b ) = ( 2 mc )
Coefficients of constant ( c ) = c² - a²
Discriminant = b² - 4ac = 0 ( Given )
( 2mc )² - 4 ( 1 + m² ) ( c² - a² ) = 0
4 m² c² - 4 ( c² - a² + m².c² - m².a² ) = 0
4 m².c² - 4 c² + 4 a² - 4 m².c² + 4 m².a² = 0
4 ( m².c² - c² + a² - m².c² + m².a² ) = 0
m².c² - c² + a² - m².c² + m².a² = 0 / 4 = 0
m².c² gets cancelled.
a² + m².a² - c² = 0
Taking ' a ' as a common factor:
a² ( 1 + m² ) - c² = 0
a² ( 1 + m² ) = c²
Hence Proved
Similar questions