Math, asked by akankshaaurav, 4 months ago

If the quadratic equation is (x-a) (x-b) + (x-b) (x-6) + (x-c) (x-a)=0
equal then show that a = b = c

Answers

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

If the quadratic equation is (x-a) (x-b) + (x-b) (x-c) + (x-c) (x-a)=0equal then show that a = b = c

─━─━─━─━─━─━─━─━─━─━─━─━─

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\large\underline\purple{\bold{Solution }}

\sf \:  ⟼(x - a)(x - b) + (x - b)(x  - c) + (x - c)(x - a) = 0

\sf \:   {x}^{2}  - ax - bx + ab +  {x}^{2}  - bx - cx + bc +  {x}^{2}  - cx - ax + ac = 0

\sf \:   {3x}^{2}  - \: 2(a + b + c) +  (ab + bc + ca) = 0

☆ Its a quadratic equation, it implies

\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{A = 3} \\ &\sf{B  =  - 2(a + b - c)}\\ &\sf{C = ab + bc + ca} \end{cases}\end{gathered}\end{gathered}

☆Since, quadratic equation has equal roots.

☆ Therefore, Discriminant = 0

\bf\implies \: {B}^{2}  - 4AC = 0

\sf \:    {\bigg(  - 2(a + b + c)\bigg)}^{2}  - 4 \times 3 \times (ab + bc + ca) = 0

\bf\implies \: {\bigg( a + b + c\bigg)}^{2}  - 3(ab + bc + ca) = 0

\sf \:  ⟼ {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca - 3ab - 3bc - 3ca = 0

\sf \:  ⟼ {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca = 0

☆ Multiply by 2 on both sides, we get

\sf \:  ⟼2 {a}^{2}  +  2{b}^{2}  +  2{c}^{2}  - 2ab -2 bc -2 ca = 0

\sf \:  ⟼ {a}^{2}  +  {a}^{2}  +   {b}^{2} +  {b}^{2}  + {c}^{2}    + {c}^{2}  - 2ab - 2bc - 2ca = 0

\sf \:  ⟼( {a}^{2}  +  {b}^{2}  - 2ab) + ( {b}^{2}  +  {c}^{2}  - 2bc) + ( {c}^{2}  +  {a}^{2}  - 2ac) = 0

\sf \:  ⟼ {(a - b)}^{2}  +  {(b - c)}^{2}  +  {(c - a)}^{2}  = 0

☆ Since, sum of squares = 0

\bf\implies \:a - b = 0 \: and \: b - c = 0 \: and \: c - a = 0

\bf\implies \:a = b \: and \: b = c \: and \: c = a

\bf\implies \:a = b = c

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions