Math, asked by malayjmistry13, 9 months ago

if the quadratic equation (k+1)x²- 2(k-1) x + 1=0 has real and equal roots than find the value of k

Answers

Answered by Cosmique
30

Given :

Quadratic equation

 \sf{(k + 1) {x}^{2}  - 2(k - 1)x + 1 = 0}

has equal and real roots

To find :

  • value of k

Knowledge required :

A quadratic equation of the form

\sf{a {x}^{2}  + bx + c = 0}

will have equal and real roots

when,

\red{ \star}  \:  \boxed{ \sf{discriminant =  {b}^{2}  - 4ac = 0}}

Solution :

Comparing

 \sf{(k + 1) {x}^{2}  - 2(k - 1)x + 1 = 0}

with

\sf{a {x}^{2}  + bx + c = 0}

we will get,

  • a = k + 1
  • b = -2 ( k - 1 )
  • c = 1

Using Formula for discriminant

\longrightarrow \sf{ {b}^{2}  - 4ac = 0}

putting values

\longrightarrow \sf{ {( - 2(k - 1))}^{2}  - 4(k + 1)(1) = 0}

\longrightarrow \sf{ {( - 2k + 2)}^{2}  - 4 k - 4= 0}

\longrightarrow \sf{ 4 {k}^{2}  + 4 +( 2)( - 2k)(2) - 4 k - 4= 0}

\longrightarrow \sf{ 4 {k}^{2}  + 4  - 8k - 4 k - 4= 0}

\longrightarrow\sf{4{k}^2 - 12 k = 0 }

\longrightarrow\sf{4k-12=0}

\longrightarrow \sf{ 4 k = 12}

\longrightarrow     \overbrace{\underbrace{\boxed{ \red{\sf{  k     =  3}}}}}

therefore,

  • Value of k is 3 .
Answered by Anonymous
22

\red{\square}~~ \sf {\underline{(k+1)x²- 2(k-1) x + 1 = 0}}

\red{\circ}~~ \boxed{{\sf Discriminent = 0}}~~\red{\circ}

\sf b²-4ac = 0

\sf b² = 4ac

\sf {-2(k-1)}² = 4×(k+1)(1)

\sf (-2k+2)² = 4k + 4

\sf 4k²+4-8k = 4k+4

\sf 4k² - 12k = 0

\sf 4k -12=0

\sf 4k=12

\boxed{\orange{\sf {k=3}}}

Similar questions