Math, asked by sarikaravindrajadhav, 9 days ago

if the quadratic equation x^2+tx+25=0 has two equal real roots find the value of t​

Attachments:

Answers

Answered by mathdude500
5

Question :-

The quadratic equation x² + tx + 25 = 0 has two equal real roots. Find the value of 't'.

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {x}^{2} + tx + 25 = 0 \: has \: real \: and \: equal \: roots.

We know,

A quadratic equation ax² + bx + c = 0 has real roots iff Discriminant, D = b² - 4ac = 0

So, on comparing the given equation with ax² + bx + c = 0,

we have

\rm \: a = 1 \\

\rm \: b = t \\

\rm \: c = 25 \\

So, as equation have equal roots.

\rm\implies \:Discriminant, D = 0 \\

\rm \:  {b}^{2} \:  -  \: 4ac \:  =  \: 0 \\

\rm \:  {t}^{2} \:  -  \: 4 \times 1 \times 25 \:  =  \: 0 \\

\rm \:  {t}^{2} \:  -  \: 100 \:  =  \: 0 \\

\rm \:  {t}^{2} \:  =  \: 100 \\

\rm\implies \: \: t \:  =  \:  \pm \: 10 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by XxLUCYxX
0

\color{lime}\large \bold{Given,}

 \sf {x}^{2}   \: +  \: tx \:  + \:  25 \:  = \:  0  \: \:  \:  \:  \color{aqua} { \underline{Has \: real \: and \: equal \: roots.}}

 \sf \: a \:  =  \: 1 \\  \\  \sf \: b \:  =  \: t \\  \\  \sf \: c \:  =  \: 25

 \sf \: We\:know\:that,\:A\: quadratic\: equation \:  {a}^{2}  \:  +  \: bx \:   +  \: c \:  =  \: 0 \: has \: real \: roots \: and \: \\  \sf Discriminate ,\: D \:  =  \:  {b}^{2}  \:  -  \: 4ac \:  =  \: 0 \\  \\ \sf So \: lets \: compare \: the \: given \: equation \: ―

 \sf \: We\:know\:that,\:A\: quadratic\: equation \:  {a}^{2}  \:  +  \: bx \:   +  \: c \:  =  \: 0 \: has \: real \: roots \: and \: \\  \sf Discriminate ,\: D \:  =  \:  {b}^{2}  \:  -  \: 4ac \:  =  \: 0 \\  \\ \sf So \: lets \: compare \: the \: given \: equation \: with \: a {x}^{2}  \:  +  \: bx \:  +  \: c \:  =  \: 0

 \sf \: Discriminate\:=\:0 \\  \\   \sf \: b^2\:-\:4ac\:=\:0  \\  \\ \sf \:  {t}^{2}  \:  -  \: 4 \:  \times  \: 1 \:  \times  \: 25 \:  =  \: 0 \\  \\  \sf \:  {t}^{2}  \:  -  \: 100 \:  =  \: 0 \\  \\  \sf \:  {t}^{2}  \:  =  \: 100 \\  \\ \sf \: t \:  =  \:  \sqrt{100}  \\  \\  \sf \: t \:  =  \: ± \: 10

Similar questions