Math, asked by buddycooldude999, 8 months ago

If the radii of the conical frustum bucket are 14 cm and 7 cm. If its height is 30 cm, then find its (i) total surface area and (ii) capacity of the bucket.

Answers

Answered by TheProphet
6

Solution :

\underline{\bf{Given\::}}

If the radii of the conical frustum bucket are 14 cm & 7 cm. If it's height is 30 cm.

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of frustum bucket according to the given question,where as;

  • R = 14 cm
  • r = 7 cm
  • h = 30 cm

Now;

Using formula of the slant height;

\boxed{\bf{Slant\:height\:(l) =\sqrt{(R-r)^{2} + h^{2}}}}

\mapsto\sf{l=\sqrt{(14-7)^{2} + (30)^{2}}} \\\\\mapsto\sf{l=\sqrt{7^{2} + 30^{2}}} \\\\\mapsto\sf{l=\sqrt{49 + 900}} \\\\\mapsto\sf{l= \sqrt{949} }\\\\\mapsto\bf{l=30.8\:cm}

Using formula of the total surface area of conical frustum bucket;

\boxed{\bf{T.S.A \:of\:conical\:bucket  =\pi l(R+r)+\pi R^{2} + \pi r^{2}  }}}}

\mapsto\sf{T.S.A \:of\:bucket = \pi \times 30.8 (14 + 7) + \pi (14)^{2} + \pi (7)^{2} }\\\\\mapsto\sf{T.S.A \:of\:bucket = 3.14 \times 30.8 \times 21 + 3.14 \times 196 + 3.14 \times 49 } \\\\\mapsto\sf{T.S.A \:of\:bucket = 2030.95 + 615.44 + 153.86}\\\\\mapsto\bf{T.S.A \:of\:bucket = 2800.25\:cm^{2} }

Now;

Using formula of the volume of the conical frustum bucket;

\boxed{\bf{Volume\:of\:frustum\:bucket=\frac{\pi }{3} (R^{2} + r^{2} + R+r)h}}}}

\mapsto\sf{Volume\:_{(bucket)} =\dfrac{3.14 }{3} \bigg((14)^{2} + (7)^{2} + 14+7\bigg)}\\\\\\\mapsto\sf{Volume\:_{(bucket)} =\dfrac{3.14 }{3} \bigg(196 + 49 + 14+7\bigg)}\\\\\\\mapsto\sf{Volume\:_{(bucket)} =\dfrac{3.14 }{3} \bigg(266\bigg)}\\\\\\\mapsto\sf{Volume\:_{(bucket)} =\dfrac{3.14 }{\cancel{3}} \times \cancel{266}}\\\\\\\mapsto\sf{Volume\:_{(bucket)} = 3.14 \times 88.66}\\\\\mapsto\bf{Volume\:_{(bucket)} = 278.41\:cm^{3}}\\

Attachments:
Similar questions