Math, asked by malathiramram, 5 months ago

If the radiousof cilinder is 4 cm and irs height is 10 cm then the total surface of area is

Answers

Answered by Saby123
2

 \setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{4 \: cm }}\put(9,17.5){\sf{10 \: cm}}\end{picture}

Solution :

For a certain cylinder -

Radius = 4 cm .

Height = 10 cm .

Total surface area of cylinder :

> 2 π rh + 2 π r²

> 2πr( h + r)

> 2 π × 4 ( 10 + 4)

> 8 π × 14

> 16 π × 7

> 16 × 22

> 352 cm² .

This is the required answer.

____________________________________

Additional Information -

 \begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Answered by Anonymous
2

Answer:

Given :-

  • Radius of Cylinder = 4 cm
  • Height = 10 cm

To Find :-

TSA

Solution :-

As we know that

TSA = 2 π rh + 2 π r²

TSA = 2πr(r + h)

TSA = 2 × π × 4 (4 + 10)

TSA = 8π(14)

TSA = 8 × 22/7 × 14

TSA = 8 × 22 × 2

TSA = 352 cm²

 \\

Similar questions