Math, asked by harshdhimanyash, 11 months ago

If the radius of a circle is decreased by 20%, find the percentage decrease
arca:
A 36%
32%
C. 21%
D. 42%​

Answers

Answered by themystery99
2

Area of circle= πr^2=22/7 r^3= 3.1426 r^2

When,

Radius is decreased by 20%,

Radius

= r -20/100*r

=4r/5

After decrement in radius,

Area

=πr^2

=22*16r^2/7*25

=352r^2/ 175

=2.0114r^2

Area = A1-A2/ A1 *100%= 36%

Answered by swethassynergy
1

The percentage decrease area is \ 36\% and option (A) is correct.

Step-by-step explanation:

Given:

The radius of a circle is decreased by 20%.

To Find:

The percentage decrease area.

Solution:

Let the radius of original circle is p.

Area of original circle =\pi p^{2}

As given,the radius of a circle is decreased by 20%.

Radius of new circle q =p-p\times\frac{20}{100}

                                      =\frac{80}{100}p=\frac{80}{100}p=\frac{4}{5} p

Area of new circle =\pi q^{2}

                               =\pi (\frac{4}{5}p )^{2}

                                =\frac{16}{25} \pi  p^{2}

 Decrease in area  = \pi p^{2} -\frac{16}{25} \pi p^{2}

                                =\pi p^{2} (1-\frac{16}{25} )

                               =\frac{9}{25} \pi p^{2}

Percentage decrease in area =\frac{\frac{9}{25}\pi p^{2}  }{\pi p^{2} }\times100

                                                   =36 \%

Thus,the percentage decrease area is \ 36\% and option (A) is correct.

                                                           

#SPJ2

                                     

Similar questions