Math, asked by brainly218, 1 year ago

If the radius of a cylinder is decreased by 50 percent and the height increased by 50 percent then find percentage decreased in volume?

Answers

Answered by siddhartharao77
26

Answer:

62.5%

Step-by-step explanation:

Let r be the radius and h be the height of the cylinder.

∴ Original volume,V = πr²h

(i) Radius is increased by 50%:

New radius, r₁ = r - 50% of r

                       = r - (50/100) * r

                       = r - r/2

                       = r/2.



(ii) Height increased by 50%:

New height, h₁ = h + 50% of h

                        = h + (50/100) * h

                        = h + h/2

                        = 3h/2


∴ New volume,V₁ = πr₁²h₁

                             = π(r/2)²(3h/2)

                             = (3/8)πr²h


Decrease in volume = V - V₁

                                 = (1 - 3/8)πr²h

                                 = (5/8)πr²h


%Decrease in volume = [5/8πr²h/πr²h] * 100%

                                     = [5/8] * 100%

                                     = 62.5%.


Therefore, decrease in volume = 62.5%.


Hope it helps!


Cutiepie93: awesome bro
siddhartharao77: Thank you sis!
brainly218: awesome
Answered by fanbruhh
9

 \huge \bf{ \red{answer}}

 \bf{62.5\%}
 \bf{step \: by \: step \: explanation}

 \sf{Given}


The radius of a cylinder is decreased by 50 percent and the height increased by 50 percent.


so the

volume before reducing and increasing was

\pi \: r^{2} h

decrease in radius

=> r-50/100 r

=> r-1/2r

=> r-r/2

=> 2r-r/2

=> r/2

Now


increase in height

=> h+50/100h

=>h+1/2h


=> h+h/2

=> 2h+h/2

=> 3h/2

Now

new volume=

 \bf{\pi \: ( \frac{r}{2} )^{2} \frac{3h}{2} }
 \pi \:  \frac{ {r}^{2} }{4}  \frac{3h}{2}

\pi \:  \frac{3r ^{2} h}{8}
\pi \:  \frac{3}{8}  {r}^{2} h


volume percent= orginal volume - new volume/original volume*100

=>
 \frac{\pi \: r ^{2} h -  \frac{3}{8} \pi \: r ^{2}h }{\pi \: r ^{2}h }  \times 100

=>
 \frac{ \frac{8\pi \: r ^{2} h - 3\pi \: r ^{2}h }{8} }{\pi \: r ^{2} h}  \times 100


 \frac{ \frac{5\pi {r}^{2} h}{8} }{\pi {r}^{2} h}  \times 100


 \bf{ \frac{5}{8}  \times 100}

 \bf{ =  >  \: 62.5\%}

 \huge{ \mathfrak{ \pink{ \: thanks}}}



Cutiepie93: Well jaani
fanbruhh: thanks jaani
Similar questions