Math, asked by purnimasil0102, 2 months ago

If the radius of a right circular cone is reduce by 10% and its height is increased by 40% , what will be the percentage increase or decrease in its volume?​

Answers

Answered by BrainlyRish
50

Given : The radius of a right circular cone is reduce by 10% and its height is increased by 40% .

Exigency To Find : The percentage increase or decrease in its volume .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀⠀⠀⠀▪︎ ⠀The radius of a right circular cone is reduce by 10% .

Therefore,

⠀⠀⠀The new radius ( r ) will be : r - 10 /100r

\qquad:\implies \sf Radius \:(r)\: =\: r - \dfrac{10}{100}r \\\\

\qquad:\implies \sf Radius \:(r)\: =\: r - \cancel {\dfrac{10}{100}}r \\\\

\qquad:\implies \sf Radius \:(r)\: =\: r - 0.1r \\\\

\qquad:\implies \sf Radius \:(r)\: =\: 0.9r \\\\

\qquad \therefore \pmb{\underline{\purple{\:Radius \:(r)\: =\: 0.9r }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀⠀&

⠀⠀⠀⠀⠀⠀⠀⠀▪︎ ⠀The height of Right Circular cone is increased by 40% .

Therefore,

⠀⠀⠀The new height ( h ) will be : h + 40 / 100h

\qquad:\implies \sf Height \:(h)\: =\: h + \dfrac{40}{100}h \\\\

\qquad:\implies \sf Height \:(h)\: =\: h + \cancel {\dfrac{40}{100}}h \\\\

\qquad:\implies \sf Height \:(h)\: =\: h + 0.4 h \\\\

\qquad:\implies \sf Height \:(h)\: =\: 1.4 h \\\\

\qquad \therefore \pmb{\underline{\purple{\:Height \:(h)\: =\: 1.4h }} }\:\:\bigstar \\

Now ,

\dag\:\:\frak{ As,\:We\:know\:that\::}\:\\\\ \qquad \maltese \:\bf Volume \:of\:cone \:: \\

\qquad \dag\:\:\bigg\lgroup \sf{Volume _{(Cone)} \:: \dfrac{1}{3} \pi r^2 h }\bigg\rgroup \\\\

\qquad \dashrightarrow \sf Volume _{(Cone)} \:=\: \dfrac{1}{3} \pi r^2 h \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf Volume _{(Cone)} \:=\: \dfrac{1}{3} \pi (0.9r)^2 \times  (1.4 h ) \\\\

\qquad \dashrightarrow \sf Volume _{(Cone)} \:=\: \dfrac{1}{3} \pi (0.81r^2) \times  (1.4 h ) \\\\

\qquad \dashrightarrow \sf Volume _{(Cone)} \:=\: \dfrac{1}{3} \pi(1.134) r^2h  \\\\

⠀⠀⠀⠀⠀⠀⠀⠀▪︎ ⠀Now , By Assuming the Volume of Cone ( V ) we get ,

\qquad \dashrightarrow \sf Volume _{(Cone)} \:=\: 1.134V \\\\

⠀⠀⠀As , The new Volume is in Positive therefore, The Volume should be increased .

Therefore,

⠀⠀⠀⠀⠀⠀Increase in volume ( V ) will be :

\qquad \dashrightarrow \sf Increase_{(Volume)} \:=\: V - \: 1.134V \\\\

\qquad \dashrightarrow \sf Increase_{(Volume)} \:=\: 0.134V \\\\

And , Now Increase in Percent will be :

\qquad \dashrightarrow \sf Increase\:Percentage\:_{(Volume)} \:=\:\dfrac{ 0.134V}{V} \times 100 \\\\

\qquad \dashrightarrow \sf Increase\:Percentage\:_{(Volume)} \:=\:\dfrac{ 0.134\cancel{V}}{\cancel {V}} \times 100 \\\\

\qquad \dashrightarrow \sf Increase\:Percentage\:_{(Volume)} \:=\: 0.134 \times 100 \\\\

\qquad \dashrightarrow \sf Increase\:Percentage\:_{(Volume)} \:=\: 13.4\:\% \: \\\\

\qquad \therefore \pmb{\underline{\purple{\:Increase\:Percentage\:_{(Volume)} \:=\: 13.4\:\% \: \: }} }\:\:\bigstar \\\\\\

⠀⠀\therefore {\underline{ \sf \:Hence, \:Increase \:of\:Percentage \:in \:Volume\:is\:\bf 13.4 \:\% \:\: }}\\

Answered by Dinosaurs1842
14

Given :

  • Shape taken = Cone
  • The radius of the cone is reduced by 10% and height is increased by 40%.

Aim :

  • To find the increase or decrease in its volume when the radius and height is changed.

Answer :

Formula to use :

\boxed{\sf \longrightarrow Volume\:of\:a\:cone = \dfrac{1}{3} \times \pi \times (radius)^{2} \times height}

Let,

  • Radius = r units
  • Height = h units.

New radius :

If radius is reduced by 10%,

\implies \sf Decrease\:in\:radius = \dfrac{10}{100} \times r

\implies \sf \dfrac{1\not0}{10\not0}

\implies \sf \dfrac{r}{10} =  Decrease\:in\:radius

  • New radius = Initial (radius) - (Decrease)

\implies \sf r -  \dfrac{r}{10} = \dfrac{9r}{10}

New height :

if height is increased by 40%,

\implies \sf Increase\:in\: height = \dfrac{40}{100} \times h

\implies \sf \dfrac{4\not0}{10\not0}

\implies \sf \dfrac{2h}{5} =  Increase\:in\: height

  • New height = (Initial height) + (Increase in height)

\implies \sf h + \dfrac{2h}{5} = \dfrac{7h}{5}

Initial volume :

  • Radius = r units
  • Height = h units

Volume :

\implies \sf Volume = \dfrac{\pi r^{2}h}{3}

New volume :

  • Radius = 9r/10 units
  • Height = 7h/5 units

Volume :

\implies \sf Volume = \pi \times  \dfrac{9r}{10}  \times  \dfrac{9r}{10}  \times  \dfrac{7h}{5}  \times  \dfrac{1}{3}

\implies \sf Volume =  \dfrac{567 \pi{r}^{2}h }{1500}

Difference/Increase :

(New volume) - (Initial volume)

\implies \sf  \dfrac{567\pi {r}^{2}h }{1500}   -  \dfrac{\pi {r}^{2}h }{3}

LCM = 1500

\implies \sf  \dfrac{567\pi {r}^{2}h - 500\pi {r}^{2}h  }{1500}

\implies \sf  \dfrac{67\pi {r}^{2}h }{1500}

Increase % :

\implies \sf  \dfrac{Increase}{Initial}  \times 100

\implies \sf  \dfrac{ \dfrac{67\pi {r}^{2}h }{1500} }{ \dfrac{\pi {r}^{2}h }{3} }  \times 100

\implies \sf  \dfrac{67\pi {r}^{2}h }{1500}   \div  \dfrac{\pi {r}^{2}h }{3}  \times 100

Cancelling πr²h and reducing 3 and 1500 to it's lowest terms,

\implies \sf  \dfrac{67}{500}  \times 100

\implies \sf  \dfrac{67}{5 \not0 \not0}  \times 1 \not0 \not0

 \implies \sf  \dfrac{67}{5}  = 13.4\%

Hence, the increase% is 13.4%.

Similar questions