Math, asked by muthuchelvi6, 9 months ago

if the radius of a right circular cylinder is increased by 25 percentage then the percentage increase in the curved surface area is

Answers

Answered by Cynefin
22

━━━━━━━━━━━━━━━━━━━━

Answer:

♦️ GiveN:

  • Radius of a right circular cylinder increased by 25%.

♦️ To FinD:

  • % change in the curved surface area of cylinder.

━━━━━━━━━━━━━━━━━━━━

Explanation for Answer:

The above question is based upon the applications of menstruation as well as percentage(arithmatic). As the question is asking for new surface area and % change, let's see the formula to be used:

\large{ \ast{ \boxed{ \sf{ \green{csa \: of \: cylinder = 2\pi rh}}}}}

 \large{ \ast{ \boxed{ \sf{ \green{\%change =  \frac{final - initial}{initial} \times 100}}}}}

By using these formulae, let's find out the solution of the question.

Refer to the attachment.....

━━━━━━━━━━━━━━━━━━━━

Solution:

Let the original radius be r

% change in radius = 25 %

Then new radius,

\large{ \sf{ \dashrightarrow \: r_n = r + 25\% \: of \: r}} \\  \\ \large{ \sf{ \dashrightarrow \: r_n = r +  \frac{25}{100}  \times r}} \\  \\ \large{ \sf{ \dashrightarrow \: r_n =  \frac{100r + 25r}{100}}} \\  \\  \large{ \sf{ \dashrightarrow \: r_n =   \cancel{\frac{125r}{100}}}} \\  \\  \large{ \sf{ \dashrightarrow \: r_n =  \frac{5r}{4} }}

Initial curved surface area = 2 πrh

So, our new curved surface area = 2 π× 5r/4×h

By using formula,

\large{ \sf{ \dashrightarrow \: \% \: change \: in \: area =  \frac{final \: CSA - initial \: CSA}{initial \: CSA}  \times 100}} \\  \\ \large{ \sf{ \dashrightarrow \: final \: CSA- initial \: CSA = 2\pi \times  (\frac{5}{4} r)h - 2\pi rh}} \\  \\ \large{ \sf{ \dashrightarrow \: final \: CSA - initial \: CSA=  \frac{5 \times 2\pi \times  rh - 4 \times 2\pi \times rh}{4}}} \\  \\  \large{ \sf{ \dashrightarrow \: final \: CSA - initial \: CSA=  \frac{2\pi \times rh (5-4)}{4}}}\\ \\  \large{ \sf{ \dashrightarrow \: final \: CSA- initial \: CSA =  \frac{2\pi rh }{4}}}

Calculating % change in area,

\large{ \sf{ \dashrightarrow \: \% \: change \: in \: CSA =  \frac{ \frac{2\pi rh}{4} }{2\pi rh} \times 100}} \\  \\ \large{ \sf{ \dashrightarrow \: \%  \: change \: in \: CSA =  \frac{1}{4} \times 100}} \\  \\  \large{ \sf{ \dashrightarrow \: \% \: change \: in \: CSA =  \boxed{ \sf{ \red{25\%}}}}} \\  \\  \large{ \therefore{ \underline{ \sf{ \green{ So \: the \: CSA  \: of \: cylinder\: increased \: by \: 25\%}}}}}

━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions