Math, asked by kkt2, 1 year ago

if the radius of a sphere is increased 50% find increase volume in percent

Answers

Answered by satyamvis
65
Hope it will help you.Thank you
Attachments:
Answered by wifilethbridge
40

Answer:

237.5%.

Step-by-step explanation:

Let the radius be x

Volume of sphere = \frac{4}{3} \pi r ^3

Where r is the radius

So, radius of given sphere =  \frac{4}{3} \pi x^3

Now  radius of a sphere is increased 50%

So, New radius = \frac{50}{100}x+x =\frac{150x}{100}

So, New Volume =  \frac{4}{3} \pi (\frac{150x}{100})^3

                          =  \frac{4}{3} \pi (\frac{3x}{2})^3

                          =  \frac{9}{2} \pi x^3

Change in volume = New volume - Original volume

                             =  \frac{9}{2} \pi x^3-\frac{4}{3} \pi x ^3

                             =  \frac{19}{6} \pi x^3

So, Increase in volume in percent =\frac{\text{Change in volume}}{\text{original volume}} \times 100

                                                         =\frac{frac{19}{6} \pi x^3}{\frac{4}{3} \pi x ^3} \times 100

                                                         =237.5\%

Hence increase volume in percent  is 237.5%.

Similar questions