Math, asked by kishorsoni3894, 1 year ago

If the radius of a sphere is increased by p% then its surface area will be increased by

Answers

Answered by DevyaniKhushi
0

let \: the \: radius \: be \: 100
then \: increased \: radius =( 100 +  \frac{100p}{100} ) =  \frac{10000 + 100p}{100}

surface \: area \: of \: original \: sphere \:  = 4\pi \times  {r}^{2}  \\   \\  = 4 \times  \frac{22}{7}  \times 100^{2}  \\  =  \frac{880000}{7}

And,
surface \: area \: of \: new \: increased \: sphere = 4\pi \times  {r}^{2}  \\  \\  = 4 \times  \frac{22}{7}  \times ( \frac{10000 + 100p}{100} )^{2}  \\  =  \frac{88}{7}  \times  \frac{100000000 + 200000p + 10000p}{10000 {p}^{2} }
Now,
required \: increment =  \frac{880000}{7}  \div  (\frac{88}{7}  \times  \frac{100000000 + 200000p + 10000 {p}^{2} }{10000}  \\  \\  =  \frac{880000 \times 7 \times 100000}{7 \times 88 \times (100000000 + 200000p + 10000 {p}^{2}) }
Similar questions