Math, asked by Maran4045, 10 months ago

If the radius of a sphere is increased from 7cm to 7.02cm.then find the approximate increase in the volume of the sphere

Answers

Answered by kamlesh678
3

Increase in Volume = 126.76 cm³ (approx)

Step-by-step explanation:

Radius r of sphere = 7 cm

Volume of Sphere = \frac{4}{3} \pi r^{3}

  = \frac{4}{3} *\frac{22}{7} * 7*7*7

=  \frac{4312}{3}  

=  1437.33 cm³

Radius of increased Sphere = 7.2 cm

Volume = \frac{4}{3} *\frac{22}{7} * 7.2 *7.2 *7.2

              = 1564.09 cm³

Increased in volume = 1564.09 - 1437.33

  = 126.76 cm³

Answered by rahul123437
2

The approximate increase in the volume of the sphere is 12.35 cm³.

To find : Approximate value of increase in the volume of the sphere.

Given :

Radius of sphere is increased from 7 cm to 7.02 cm.

Formula :

Volume of the sphere = \frac{4}{3}\pi  r^3

Radius of sphere at 7 cm :

Radius (r_1) = 7 cm.

Volume of sphere =  \frac{4}{3}\pi  r^3

                              = \frac{4}{3} \times\(3.14\times(7)\times(7)\times(7)        [ \pi = 3.14 ]

                         r_1  = 1436.02

Radius of sphere at 7.02 cm :

Radius (r_2) = 7.02 cm

Volume of sphere = \frac{4}{3}\pi  r^3

                              = \frac{4}{3} \times\(3.14\times(7.02)\times(7.02)\times(7.02)     [ \pi = 3.14 ]

                          r_2 = 1448.37

Increase in the volume of the sphere = r_2 - r_1

                                                              = 1448.37 - 1436.02

                                                              = 12.35 cm^3.

Therefore, the approximate volume of the sphere is 12.35 cm³.

To learn more...

1. brainly.in/question/3899750

2. brainly.in/question/1777182

Similar questions