Math, asked by Mister360, 3 months ago

If the radius of a sphere is trippled then what is the ratio of their volumes?

Answers

Answered by OtakuSama
64

Question:-

If the radius of a sphere is trippled then what is the ratio of their volumes?

Required Answer:-

Given Condition:-

  • The radius of a sphere is tripled

To Find:-

  • The ratio of their volumes

Solution:-

Let the original radius be r

As we know that :-

Volume of a sphere:-

 \boxed{ \sf{ \blue{ \bold{V} =  \frac{4}{3} \pi \:  {r}^{3} }}}

If the radius is tripled then the new radius = 3r

Hence, the new volume becomes:-

 \sf{ \bold{{V}_{new} }=  \frac{4}{3}  \pi  \times (3r) {}^{3} }

 \sf{ \bold{{V}_{new} }=  \frac{4}{3}  \pi  \times 27 {r}^{3} }

Then, the ratio of the volumes:-

 \sf{ Ratio \: of \: the \: volumes} = \: \sf{ \large{  \frac{\frac{4}{3} \pi \:  {r}^{3} }{ \frac{4}{3}  \pi  \times 27 {r}^{3} } } }

 \sf{ \implies{{ Ratio \: of \: the \: volumes} = \: \sf{ \large{  \frac{1}{27} }}}}

 \sf{ \implies{{ Ratio \: of \: the \: volumes} = \: \sf{ \large{ \orange{1 \ratio{27}}}}}}

Therefore,the ratio of their volumes is 1:27

Answered by TheBrainlyStar00001
58

Your Question

\\\\

  • If the radius of a sphere is trippled then what is the ratio of their volumes?

\\\\

Required Answer

\\\\

Given Radius of sphere Trippled.

\\\\

To FindRatio of their volumes

\\\\

So, lets start solving,

 \\  ❍  \underline{ \tt \: Let, \: original \: radius \: be \:    \boxed{\bf r \: _{(radius)}.}} \\  \\

 ❒ \:  \: \bf \underline {As \: we \: know \: that,} \\

 ❍ \tt \:  \underline {The \: original \: volume \: of \: a \: spehere \: \bf : \implies \:  {\color{purple}\frac{4}{3}  \pi r {}^{3}} } \\  \\

.°. New Radius,

 \\ ✧ \:  \boldsymbol  {\underline{According \: to \: the \: question,}} \\

 \qquad \bull \:  \underline{ \tt \: Radius \: of \: the \:sphere \: is \: trippled.} \\  \\

Then,

 \\ ❏ \:  \bf \:  \underline{New \: volume} \:   : \implies \:   \tt\frac{4}{3}  \pi(3r) {}^{3}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \qquad \qquad \:  \bf \qquad :  \implies \:  \frac{4}{3}  \pi(27 r {}^{3} ) \\  \\  \\

 \therefore \:  \bf  \underline {Ratio} \:    :  \implies \:   \tt\frac{  \cancel{\frac{4}{3} \pi} \cancel{ r {}^{3}}  }{ \cancel{\frac{4}{3} \pi}( 27 \cancel{r {}^{3}}) }   \:  \:  ➠ \:  ✰ \:  \: \underline{ \boxed{ \:  \frak{\color{purple}{\frac{1}{27} }}} }\:  \:   ✰\\   \\

 \underline{ \boldsymbol{❃\:\:Hence,} \:  \tt \: the \: ratio \: of \: their \: volume \: is  \bf\: \color{purple}1:27}. \\  \\  \\

✯ Hope it helps u ✯

Similar questions