Math, asked by msaidikshya, 4 months ago

if the radius of base and height of a right circular cone and a right circular cylinder are equal then the ratio of their volume is​

Answers

Answered by Vikramjeeth
30

Let their radius and height be 5x and 12x respectively

Slant height of the cone,

l =  \sqrt{( {5x}^{2}) + ( {12x}^{2})}  \\  =  13x  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \frac{total \: surface \:area \: of \: cylinder }{total \: surface \: area \: of \: cone}  \\  \\  =  \frac{2\pi r(h + r)}{\pi r(l + r)}  \\  \\  =  \frac{2(h + r)}{(l + r)}  \:  \:  \\   \\  =  \frac{2 \times (12x + 5x)}{(13x + 5x)}  \\  \\ =   \frac{34x}{18x}  \\  \\  =  \frac{17}{9}  \\  \\

or 17:9.

Similar questions