Math, asked by REYA7221, 4 months ago

If the radius of base of a cone is tripled and height is doubled, then find the volume of a new cone.

Answers

Answered by Anonymous
38

\underline{\bigstar\:\textsf{According to the Given Question :}}

Radius of Base of a cone is tripled and Height of a cone is double means r is 3r and h is 2h.

\begin{gathered}:\implies\sf Volume_{\:(cone)} = \dfrac{1}{3} \pi r^2 h \\\\\\:\implies\sf Volume_{\:(cone)} = \dfrac{1}{3} \pi (3r)^2 \times (2h) \\\\\\:\implies\sf Volume_{\:(cone)} = \dfrac{1}{\cancel{\;3}} \pi \; \cancel{\;9}\;r^2 \times 2h\\\\\\:\implies\sf Volume_{\:(cone)} = 6 \pi r^2 h\\\\\\:\implies{\underline{\boxed{\sf{\mathcal{V}olume_{\:(cone)} = 18\bigg( \dfrac{1}{3}\pi r^2h\bigg)}}}}\end{gathered}

⠀⠀

\therefore{\underline{\sf{Hence, \;it\; becomes\;\bf{18\;times}\sf{\;more\;than\;old\;volume.}}}}

⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\begin{gathered}\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\purple{\bigstar\: Formulae\:related\:to\:cone :}}}}}\mid}\\\\\end{gathered}

 \\  \\

\sf Area\:of\:base = \bf{\pi r^2}

\sf Curved\:surface\:area\:of\:cone = \bf{\pi rl}

\sf Total\:surface\:area\:of\:cone = Area\:of\:base + CSA = \pi r^2 + \pi rl = \bf{\pi r(r + l)}

\sf Volume\:of\:cone = \bf{\dfrac{1}{3} \pi r^2 h}

Similar questions