Math, asked by sak0123gamilcom, 4 months ago

if the radius of sphere be doubled then the total surface area of new sphere will be how many times of old sphere ​

Answers

Answered by varadad25
7

Answer:

If the radius of the sphere is doubled, then the total surface area of the new sphere will be 4 times that of the old sphere.

Step-by-step-explanation:

We have given that the radius of a sphere is doubled.

We have to find how many times the total surface area of the sphere will be of old sphere.

Now,

Let,

\displaystyle{\bullet\:\sf\:r} be the radius of the old sphere.

\displaystyle{\bullet\:\sf\:TSA_{old\:sphere}} be the total surface area of the old sphere.

\displaystyle{\bullet\:\sf\:2r} be the radius of the new sphere.

\displaystyle{\bullet\:\sf\:TSA_{new\:sphere}} be the total surface area of the new sphere.

Now, we know that,

\displaystyle{\pink{\sf\:Total\:surface\:area\:of\:sphere\:=\:4\:\pi\:r^2}}

\displaystyle{\implies\sf\:TSA_{old\:sphere}\:=\:4\:\pi\:r^2\:\:\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:TSA_{new\:sphere}\:=\:4\:\pi\:(\:2r\:)^2}

\displaystyle{\implies\sf\:TSA_{new\:sphere}\:=\:4\:\pi\:4\:r^2\:\:\:\:-\:-\:(\:2\:)}

Now, comparing equations ( 1 ) & ( 2 ), we get,

\displaystyle{\sf\:\cancel{4}\:\cancel{\pi}\:\cancel{r^2}\:=\:\cancel{4}\:\cancel{\pi}\:4\:\cancel{r^2}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:TSA_{old\:sphere}\:=\:4\:TSA_{new\:sphere}}}}}

∴ If the radius of the sphere is doubled, then the total surface area of the new sphere will be 4 times that of the old sphere.

Similar questions