Math, asked by demon1467, 5 months ago

If the radius of the base and height of a cone are "a" and " 2a"
respectively, then its curved surface area is ?​

Answers

Answered by Asterinn
22

Given :

➝ Radius of cone = a

➝ Height of cone = 2a

To find :

➝ Curved surface area (C.S.A) of cone

Formula used :

➝ l² = r² + h²

➝ C.S.A = π r l

Where :-

l = slant height

r = radius of base of cone

h = height of cone

C.S.A = Curved surface area

Solution :

➝ Radius of base of cone = a

➝ Height of cone = 2a

Now , we have to find out slant height of cone.

➝ l² = a² + (2a)²

➝ l² = a² + 4a²

➝ l² = 5a²

➝ l = √(5a²)

➝ l = √(5) a

Slant height = a√5 units

Now , we will find out C.S.A :-

➝ C.S.A = π × a× √(5) a

➝ C.S.A = π√(5) a² square unit

Answer :

π√(5) a² square unit

Attachments:
Answered by HA7SH
93

Step-by-step explanation:

____________________________________________________________

\text{\huge\underline{\red{Question:-}}}

:\Longrightarrow ● If the radius of the base and height of a cone are "a" and " 2a" respectively, then its curved surface area is ?

\text{\huge\underline{\orange{To\ Find:-}}}

:\Longrightarrow ● We have to find the curved surface area of cone.

\text{\huge\underline{\green{Given:-}}}

:\Longrightarrow ● Radius of cone = a.

:\Longrightarrow ● Height of cone = 2a.

\text{\large\underline{\blue{Formula\ to\ be\ used:-}}}

:\Longrightarrow  \mathrm\orange{l²\ =\ r²\ +\ h².}

:\Longrightarrow  \mathrm\orange{C.S.A\ =\ \pi\ r\ l.}

\text{\large\underline{\bf{And\ Where:-}}}

:\Longrightarrow  \mathrm\orange{l\ =\ slant\ height.}

:\Longrightarrow  \mathrm\orange{r\ =\ radius\ of\ base\ of\ cone.}

:\Longrightarrow  \mathrm\orange{h\ =\ height\ of\ cone.}

:\Longrightarrow  \mathrm\orange{C.S.A\ =\ Curved\ Surface\ Area.}

\text{\Large\underline{\purple{Now,\ Solution:-}}}

:\Longrightarrow  \mathrm{Radius\ of\ base\ of\ cone\ =\ a}

:\Longrightarrow  \mathrm{Height\ of\ cone\ =\ 2a}

 \mathrm\pink{We\ have\ to\ find\ the\ slant\ height\ of\ the\ cone:-}

:\Longrightarrow  \mathrm{l²\ =\ a²\ +\ (2a)²}

:\Longrightarrow  \mathrm{l²\ =\ a²\ +\ 4a²}

:\Longrightarrow  \mathrm{l²\ =\ 5a²}

:\Longrightarrow  \mathrm{l\ =\ \sqrt{(5a²)}}

:\Longrightarrow  \mathrm{l\ =\ \sqrt{(5)}\ a}

:\Longrightarrow  \mathrm{Slant\ height\ =\ a\ \sqrt{5}\ units.}

\text{\large\underline{\bf{Now,\ we\ will\ find\ C.S.A:-}}}

:\Longrightarrow  \mathrm{C.S.A\ =\ \pi\ ×\ a\ ×\ \sqrt{(5)}\ a}

:\Longrightarrow  \mathrm{C.S.A\ =\ \pi\ \sqrt{(5)}\ a²\ square\ unit.}

:\Longrightarrow  \mathrm\purple{Hence,\ the\ answer\ is\ \pi\ \sqrt{(5)}\ a²\ square\ unit.}

\text{\huge\underline{\bf{Hence\ Verified}}}

____________________________________________________________

Similar questions