Math, asked by bhavikchudasam5040, 11 months ago

If the radius of the circle 3x square +3ysquare-6x+4y-4=0

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Radius=\frac{5}{3}\:unit}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {3x}^{2}  + 3 {y}^{2}  - 6x + 4y - 4 = 0 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Radius =?

• According to given question :

 \bold{Eqn \: of \: standard \: circle : } \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0  -  -  -  -  - (1)\\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  {3x}^{2}  +  {3y}^{2}  - 6x  + 4y - 4 = 0 \\  \\  \text{Dividing \: both \: side \: by \:  3} \\ \tt:  \implies  \frac{ {3x}^{2} }{3}  +  \frac{ {3y}^{2} }{3}  -  \frac{6x}{3}  +  \frac{4y}{3}  -  \frac{4}{3}  = 0 \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2}  - 2x +  \frac{4y}{3}  -  \frac{4}{3}  = 0  -  -  -  -  - (2)\\  \\  \text{Comparing \: (1) \: and \: (2)} \\  \tt \circ \:  g =   - 1 \:  \:  \:  \:  \:  \: f =  \frac{2}{3}  \:  \: \:  \:  \:  \: c =  \frac{ - 4}{3}  \\  \\  \bold{For \: Radius : } \\  \tt:  \implies Radius =  \sqrt{ {g}^{2}  +  {f}^{2}  - c}  \\  \\ \tt:  \implies Radius = \sqrt{ { (- 1)}^{2} +  { (\frac{2}{3} )}^{2}  +  \frac{4}{3}    }  \\  \\ \tt:  \implies Radius =  \sqrt{1 +  \frac{4}{9}  +  \frac{4}{3} }  \\  \\ \tt:  \implies Radius = \sqrt{ \frac{9 + 4 + 12}{9} }  \\  \\ \tt:  \implies Radius = \sqrt{ \frac{25}{9} }  \\  \\   \green{\tt:  \implies Radius = \frac{5}{3}  \: unit}

Answered by AdorableMe
51

Given :-

\displaystyle{\sf{3x^2+3y^2-6x+4y-4=0.}}

To find :-

\textsf{The radius of the circle.}

Solution :-

\textsf{General equation of a circle = }\sf{x^2+y^2+2gx+2fy+c=0.}

\textsf{So, the coefficient of }\sf{x^2\ and\ y^2\ must\ be\ equal,\ which\ is\ 3\ here.}

\textsf{Coefficient of xy must be 0, where in this equation, it is neglected.}

\textsf{Thus, }\sf{3x^2+3y^2-6x+4x-4=0}

\underline{\textsf{Dividing the equation by 3:}}

\displaystyle{\sf{\implies \frac{3x^2}{3}+\frac{3y^2}{3}-\frac{6x}{3} +\frac{4x}{3}-\frac{4}{3}=0    }}\\\\\displaystyle{\sf{\implies x^2+y^2-2x+\frac{4x}{3}-\frac{4}{3}=0  }}

\textsf{Now, when we compare this result with the general equation,}\\\textsf{we get:}

\bold{\sf{g=-1,\ f=\frac{2}{3}\ and\ c=\frac{-4}{3}.  }}

\underline{\bold{The\ radius\ of\ the\ circle\ :}}

\sf{Radius=\sqrt{g^2+f^2-c} }\\\\\sf{Radius=\sqrt{(-1)^2+(\frac{2}{3} )^2 -\frac{-4}{3} }

\sf{Radius=\sqrt{1+\frac{4}{9}+\frac{4}{3}  } }\\\\

\sf{Radius=\sqrt{\frac{9+4+12}{9} }}\\\\\sf{Radius=\sqrt{\frac{25}{9} }}

\underline{\boxed{\sf{Radius=\frac{5}{3}\ units }}}

Similar questions