Math, asked by Zasss4546, 8 months ago

If the radius of the circle x^2+y^2-2x+3y+k=0 is 5/2,then k=

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=-3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  -2x + 3y + k = 0 \\  \\  \tt:  \implies Radius \: of \: circle =  \frac{5}{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: k =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Eqn  \: of \: circle \to  {x}^{2}  +  {y}^{2}   + 2gx + 2fy + c= 0 -  -  -  -  - (1) \\  \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  - 2x + 3y + k = 0 \\  \\ \tt:  \implies  {x}^{2}  +  {y}^{2}   +  2 \times( -  1 )\times x + 2 \times  \frac{3}{2}  \times y + k = 0 -  -  -  -  - (2) \\  \\  \text{Comparing \: (1) \: and \: (2)} \\  \tt \circ  \: g =  - 1 \\  \\  \tt \circ \: f =  \frac{3}{2}  \\  \\  \tt \circ \: c = k \\  \\  \bold{For \: Radius : } \\ \tt:  \implies Radius =  \sqrt{ {g}^{2} +  {f}^{2}  - c }  \\  \\ \tt:  \implies  \frac{5}{2}  =  \sqrt{ {( - 1)}^{2} +  (\frac{3}{2})^{2}   - k  }  \\  \\ \tt:  \implies  (\frac{5}{2} )^{2}  = 1 +  \frac{9}{4}  - k \\  \\ \tt:  \implies k =  1 + \frac{9}{4}  -  \frac{25}{4}  \\  \\ \tt:  \implies k =  \frac{4 + 9 - 25}{4}  \\  \\   \tt: \implies k =  \frac{ - 12}{4}  \\  \\ \green{\tt:  \implies k =   - 3 }

Answered by Saby123
23

Question -

If the radius of the circle x^2+y^2-2x+3y+k=0 is 5/2,then k = ?

To Find -

The value Of k

Solution -

We know that -

The general equation of a circle can be represented by -

 {x}^2 + {y}^2 + 2gx + 2fy + c = 0 \\ \\ \sf{ Comparing \: the \: coefficients \: : } \\ \\ => 2gx = -2x \\ \\ => g = -1 \\ \\ => 2fy = 3y \\ \\ => f = \dfrac{3}{2} \\ \\ => c = k

Now we know the formula for the radius of a circle  -

Radius \: Of \: A \: Circle =\sqrt{g^{2}+ f^{2} - c  }  \\ \\  \sf{ Substuting \: The \:  required \: values \: - }  \\ \\ Radius = \sqrt{ 1 + \dfrac{9}{4} - k } = \dfrac{5}{2} \\ \\ \sf{ Squaring \: Both \: sides \: - } \\ \\  \dfrac{13}{4}  - k = \dfrac{25}{4} \\ \\ - k = \dfrac{25}{4} - \dfrac{13}{4} = 3 \\ \\ k =  -3 \ ........ [ A ]

So the required value of k comes out to be -3.

Hence this is the required Answer .

Answer -

If the radius of the circle x^2+y^2-2x+3y+k=0 is 5/2,then k =  -3.

Similar questions