Math, asked by salonipadwal1607, 1 month ago

If the radius of the cone is 6 cm and perpendicular height is 8 cm then find the curved surface area of cone.(take pi=3.14) *​

Answers

Answered by SarcasticL0ve
77

Given : Radius and Perpendicular height of cone is 6 cm and 8 cm respectively.

To find : Curved surface area (CSA) of cone.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

We require radius and Slant height of cone in the formula of CSA. So, Let's find out the Slant height of cone —

▪︎Formula to find Slant height (l) of cone is given by -

⠀⠀⠀⠀

\star\:{\underline{\boxed{\pmb{\sf{Slant\:height = \sqrt{\bigg(radius \bigg)^2 + \bigg(height \bigg)^2}}}}}}\\\\\\ \bf{\dag}\:{\underline{\frak{By\:putting\:values\:in\:formula\::}}}\\\\\\ \dashrightarrow\sf Slant\:height = \sqrt{(6)^2 + (8)^2}\\\\\\ \dashrightarrow\sf Slant\:height = \sqrt{36 + 64}\\\\\\ \dashrightarrow\sf Slant\:height = \sqrt{100}\\\\\\  \dashrightarrow{\underline{\boxed{\purple{\pmb{\frak{Slant\:height = 10\:cm}}}}}}\:\bigstar\\\\\\

\therefore{\underline{\sf{Slant\:height\:(l)\:of\:cone\:is\:{\pmb{10\:cm}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

✇ Now, By using value of radius (r) & Slant height (l) of cone. Let's find CSA of cone —

⠀⠀⠀⠀

\qquad\quad\star\:{\underline{\boxed{\pmb{\sf{Curved\:Surface\:Area_{\:(cone)} = \pi r l}}}}}\\\\\\ \qquad\quad\dashrightarrow\sf CSA_{\:(cone)} = 3.14 \times 6 \times 10\\\\\\ \qquad\quad\dashrightarrow\sf CSA_{\:(cone)} = \dfrac{314}{10 \cancel{0}} \times 6 \times \cancel{10}\\\\\\ \qquad\quad\dashrightarrow\sf CSA_{\:(cone)} = 31.4 \times 6\\\\\\ \qquad\quad\dashrightarrow{\underline{\boxed{\pink{\pmb{\frak{CSA_{\:(cone)} = 188.4\:cm^2}}}}}}\:\bigstar\\\\\\

\therefore{\underline{\sf{Curved\:Surface\:area\:of\:cone\:is\:{\pmb{188.4\:cm^2}}.}}}

Attachments:
Answered by Anonymous
80

Answer:

Given :-

  • The radius of the cone is 6 cm and perpendicular height is 8 cm.
  • π = 3.14

To Find :-

  • What is the curved surface area of the cone.

Formula Used :-

\clubsuit Slant Height Formula :

\longmapsto \sf\boxed{\bold{\pink{l =\: \sqrt{h^2 + r^2}}}}\\

where,

  • l = Slant Height
  • h = Height
  • r = Radius

\clubsuit Curved Surface Area of Cone Formula :

\longmapsto \sf\boxed{\bold{\pink{C.S.A\: Of\: Cone =\: {\pi}rl}}}\\

where,

  • C.S.A = Curved Surface Area
  • r = Radius
  • l = Slant Height

Solution :-

First, we have to find the slant height of the cone :

Given :

  • Radius = 6 cm
  • Height = 8 cm

According to the question by using the formula we get,

\implies \sf l =\: \sqrt{(8)^2 + (6)^2}

\implies \sf l =\: \sqrt{8 \times 8 + 6 \times 6}

\implies \sf l =\: \sqrt{64 + 36}

\implies \sf l =\: \sqrt{100}

\implies \sf\bold{\purple{l =\: 10\: cm}}

Hence, the slant height is 10 cm .

Now, we have to find the curved surface area of the cone :

Given :

  • π = 3.14
  • Radius (r) = 6 cm
  • Slant Height (l) = 10 cm

According to the question by using the formula we get,

\longrightarrow \sf C.S.A\: Of\: Cone =\: 3.14 \times 6 \times 10\\

\longrightarrow \sf C.S.A\: Of\: Cone =\: \dfrac{314}{100} \times 60\\

\longrightarrow \sf C.S.A\: Of\: Cone =\: \dfrac{1884\cancel{0}}{10\cancel{0}}\\

\longrightarrow \sf C.S.A\: Of\: Cone =\: \dfrac{1884}{10}\\

\longrightarrow \sf\bold{\red{C.S.A\: Of\: Cone =\: 188.4\: cm^2}}

\therefore The curved surface area or CSA of cone is 188.4 cm².

Similar questions