Math, asked by aakashkanojiya26, 4 months ago

If the radius of the sphere is unity ,find the value of d​

Attachments:

Answers

Answered by mathdude500
2

Concept Used :-

If the equation of sphere is

 \sf \:  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2ux + 2vy + 2wz + d = 0

then,

Centre of sphere is given by

 \tt \: C = (\dfrac{ - coeff. \: of \: x}{2}  ,\dfrac{ - coeff. \: of \: y}{2} , \dfrac{ - coeff. \: of \: z}{2})

i.e.

\rm :\implies\:C = ( - u ,  - v,  - w)

and

Radius of sphere is given by

\rm :\implies\:r \:  =  \:  \sqrt{ {u}^{2}  +  {v}^{2} +  {w}^{2}   - d}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

The equation of sphere is

 \sf \: {2x}^{2}  +  {2y}^{2}  +  {2z}^{2}  + 3x + 4y + 5z + d = 0

To represent this equation in general form,

  • Divide the whole equation by 2, we get

 \tt \:  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + \dfrac{3}{2} x +2y +  \dfrac{5}{2} z + \dfrac{d}{2}  = 0

So,

  • Centre of sphere is given by

\rm :\implies\:C = ( - \dfrac{3}{4}  ,  - 1, - \dfrac{5}{4}  )

and

  • radius of sphere is given by

\rm :\implies\:r \:  =  \sqrt{ {(\dfrac{ - 3}{4} )}^{2}  +  {( - 1)}^{2}  +  {(\dfrac{ - 5}{4} )}^{2}  -  \dfrac{d}{2} }

\rm :\implies\:r \:  =  \sqrt{\dfrac{9}{16}  + 1 + \dfrac{25}{16} -  \dfrac{d}{2}  }

\rm :\implies\:r \:  =  \:  \sqrt{\dfrac{9 + 16 + 25 - 8d}{16} }

\rm :\implies\:r \:  =  \:  \sqrt{\dfrac{50 - 8d}{16} }

 \bullet{ \green{ \bf \: According \:  to \:  statement,}}

 \bigstar \:  \: { \boxed{ \red{ \tt \:radius \: (r) \: of \: sphere \:  = 1 \: unit }}}

\rm :\implies\:1 \:  =  \:  \sqrt{\dfrac{50 - 8d}{16} }

Squaring both sides, we get

\rm :\implies\:1 = \dfrac{50 - 8d}{16}

\rm :\implies\:50 - 8d = 16

\rm :\implies\:8d = 34

 \bigstar \:  \: { \boxed{ \red{ \rm :\implies\:d \:  =  \: \dfrac{17}{4}  }}}

Answered by PromptoArgentum
1

hope you understand

regards

(prompto)

Attachments:
Similar questions