Chemistry, asked by Nutanc419, 1 year ago

If the radius of the tetrahedral void is r and radius of atom r, derive a relation btw r and r

Answers

Answered by Anonymous
5

❣❣If the radius of the octahedral void is r and radius of the atoms in close- packing is R relation between r and R.

Answered by Anonymous
23

SOLUTION

A tetrahedral void may be represented in a cube. In which there spheres from the triangular base, the fourth lies at the top & the sphere occupies the tetrahedral void.

Let the length of the side of the cube=a

Radius of sphere= R

Radius of Void=r

From right angled triangle ABC, face diagonal

 =  &gt; </u></strong><strong><u>AB</u></strong><strong><u>=  \sqrt{</u></strong><strong><u>AB</u></strong><strong><u> {}^{2} + </u></strong><strong><u>BC</u></strong><strong><u> {}^{2}  }  =  \sqrt{ {a}^{2}  +  {a}^{2} }  =  \sqrt{2a}

As sphere A & B are actually touching each other, face diagonal AB=2R therefore, 2R= 2a

=) R= 1/2a......(1)

Again from the right angled triangle ABD

 =  &gt; </u></strong><strong><u>AD</u></strong><strong><u>=  \sqrt{ {</u></strong><strong><u>AB</u></strong><strong><u>}^{2}  +  {</u></strong><strong><u>BD</u></strong><strong><u>}^{2} }  =  \sqrt{ \sqrt{2 {a}^{2} }  +  {a}^{2} }  =  \sqrt{3a}

But as small sphere that is void touches other spheres, evidently body diagonal AD= 2(R+r) therefore, 2(R+r)= 3a

or R+r= 3/2a...........(2)

Dividing equation (2) by (1), we get

 =  &gt;  \frac{(</u></strong><strong><u>R</u></strong><strong><u>+ r)}{</u></strong><strong><u>R</u></strong><strong><u>}  =  \frac{ \frac{ \frac{ \sqrt{3a} }{2} }{1} }{ \sqrt{2} } a =  \sqrt{ \frac{3}{2} }  \\  \\  =  &gt;  \frac{1 + r}{</u></strong><strong><u>R</u></strong><strong><u>}  =  \sqrt{ \frac{3}{2} }  = 1.225 \\  \\   =  &gt;  \frac{r}{</u></strong><strong><u>R</u></strong><strong><u>}  = 1.225 - 1 = 0.225 \\  =  &gt; r = 0.225</u></strong><strong><u>R</u></strong><strong><u>

hope it helps ☺️

Similar questions