Math, asked by rabiyaakif14, 2 days ago

if the ratio a:bis unaltered when x and yare added to its items in order show that x:y =a:b​

Answers

Answered by vk65001
1

Answer:

Positive number a,b

A.M=

2

a+b

GM=

ab

m:n=

2

ab

a+b

R.H.S=

(m−

m

2

−n

2

)

(m+

m

2

−n

2

)

Divide by n in both numerator and denominator.

=

(

n

m

n

2

m

2

−1

)

(

n

m

+

n

2

m

2

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

+2ab

−1

)

(

2

ab

a+b

+

4ab

a

2

+b

2

+2ab

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

−2ab

)

(

2

ab

a+b

+

4ab

a

2

+b

2

−2ab

)

=

2

ab

a+b+(a−b)

2b

2a

=

b

a

=LHS

LHS=RHS

Answered by vk65001
0

Answer:

Positive number a,b

A.M=

2

a+b

GM=

ab

m:n=

2

ab

a+b

R.H.S=

(m−

m

2

−n

2

)

(m+

m

2

−n

2

)

Divide by n in both numerator and denominator.

=

(

n

m

n

2

m

2

−1

)

(

n

m

+

n

2

m

2

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

+2ab

−1

)

(

2

ab

a+b

+

4ab

a

2

+b

2

+2ab

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

−2ab

)

(

2

ab

a+b

+

4ab

a

2

+b

2

−2ab

)

=

2

ab

a+b+(a−b)

2b

2a

=

b

a

=LHS

LHS=RHS

Answered by vk65001
0

Answer:

Positive number a,b

A.M=

2

a+b

GM=

ab

m:n=

2

ab

a+b

R.H.S=

(m−

m

2

−n

2

)

(m+

m

2

−n

2

)

Divide by n in both numerator and denominator.

=

(

n

m

n

2

m

2

−1

)

(

n

m

+

n

2

m

2

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

+2ab

−1

)

(

2

ab

a+b

+

4ab

a

2

+b

2

+2ab

−1

)

=

(

2

ab

a+b

4ab

a

2

+b

2

−2ab

)

(

2

ab

a+b

+

4ab

a

2

+b

2

−2ab

)

=

2

ab

a+b+(a−b)

2b

2a

=

b

a

=LHS

LHS=RHS

Similar questions