Math, asked by ssyiv992, 4 months ago

If the ratio of a principal and the amounts for 5 years is 5 : 6, then find the rate of simple interest per annum.​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\textsf{In 5 years, Principal : Amount = 5 : 6}

\textbf{To find:}

\textsf{Rate of interest}

\textbf{Solution:}

\textbf{Simple interest formula:}

\mathsf{Simple\;interest=\dfrac{Pnr}{100}}

\textsf{As per given data,}

\mathsf{Principal:Amount=5:6}

\implies\mathsf{\dfrac{P}{P+\dfrac{Pnr}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{nr}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{5r}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{r}{20}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{\dfrac{20+r}{20}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{20}{20+r}=\dfrac{5}{6}}

\implies\mathsf{120=5(20+r)}

\implies\mathsf{120=100+5r}

\implies\mathsf{20=5r}

\implies\mathsf{r=\dfrac{20}{5}}

\implies\boxed{\mathsf{r=4\%}}

\textbf{Find more:}

If the sum of interest on rs850 for 3years and rs1250 for 4years at the same rate of interest is rs302 find the percentage of si per annum

https://brainly.in/question/16801176

Difference between CI and SI on rs. 8400 for 2 years at 21 at same rate of interest per year. Find rate of interest

https://brainly.in/question/26563854

Answered by mahek77777
16

\textbf{Given:}

\textsf{In 5 years, Principal : Amount = 5 : 6}

\textbf{To find:}

\textsf{Rate of interest}

\textbf{Solution:}

\textbf{Simple interest formula:}

\mathsf{Simple\;interest=\dfrac{Pnr}{100}}

\textsf{As per given data,}

\mathsf{Principal:Amount=5:6}

\implies\mathsf{\dfrac{P}{P+\dfrac{Pnr}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{nr}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{5r}{100}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{1+\dfrac{r}{20}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{1}{\dfrac{20+r}{20}}=\dfrac{5}{6}}

\implies\mathsf{\dfrac{20}{20+r}=\dfrac{5}{6}}

\implies\mathsf{120=5(20+r)}

\implies\mathsf{120=100+5r}

\implies\mathsf{20=5r}

\implies\mathsf{r=\dfrac{20}{5}}

\implies\boxed{\mathsf{r=4\%}}

Similar questions