Math, asked by Yashvishal97, 3 months ago

If the ratio of areas of two similar triangles is 9 : 4 then the ratio of them
corresponding altitudes is
(B) . 3:2
(A) 2:3
(C) 4:9
(D)
9:4​

Answers

Answered by perfectico
3

Hey mate here is ur answer

❤❤

Step-by-step explanation:

consider \: two \: triangles \\ triangle1 \: be \: 9x \\ triangle2 \: be \: 4x \\ let \: the \: altitude \: of \: 1st \: triangle \: be \: h1 \\ and \: 2nd \: triangle \: be \: h2 \\area \: of \: triangle1 =   \frac{1}{2}  \times b \times h1 \\ 9x =  \frac{1}{2}  \times b \times h1 \\ h1 =   \frac{9x \times 2}{b}  \\ h1 =  \frac{18x}{b}  \\ area \: of \: triangle2 =  \frac{1}{2}  \times b \times h2 \\ 4x =  \frac{1}{2}  \times b \times h2 \\ h2 =  \frac{4x \times 2}{b}  \\ h2 =  \frac{8x}{b}  \\ therefore   \\  =  h1 : h2 \\  =  \frac{18x}{b}  :  \frac{8x}{b}  \\  \frac{h1}{h2}  =  \frac{18x}{b}  \times  \frac{b}{8x}  \\  \frac{h1}{h2}  =  \frac{9}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ h1 : h2 = 9 : 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hope this helps you

If yes thn plz mark it as BRAINLIEST!!

#thnq

Similar questions