Math, asked by sathwikasiddu8, 7 months ago

If the ratio of sines of angles of a triangle is 1 : 1 : √2 then the ratio of square of the greatest side to sum of the squares of other two sides is
(a) 3 : 4
(b) 2 : 1
(c) 1 : 1
(d) 1 : 2

Answers

Answered by MaheswariS
14

\underline{\textbf{Given:}}

\textsf{The ratio of sines of angles of a triangle is}\;\mathsf{1:1:\sqrt{2}}

\underline{\textbf{To find:}}

\textsf{The ratio of the square of the greatest side to}

\textsf{sum of the squares of other two sides}

\underline{\textbf{Solution:}}

\mathsf{Let\;\triangle\;ABC\;be\;the\;given\;triangle}

\mathsf{sinA:sinB:sinC=1:1:\sqrt{2}}

\mathsf{Using\;Sine\;formula,}

\mathsf{\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R}

\mathsf{\dfrac{a}{1}=\dfrac{b}{1}=\dfrac{c}{\sqrt{2}}=2R}

\implies\mathsf{a=2R,\;b=2R,\;c=2\sqrt{2}R}

\textsf{Clearly, c is the greatest side}

\mathsf{Now,}

\mathsf{c^2:(a^2+b^2)}

\mathsf{=(2\sqrt{2}R)^2:((2R)^2+(2R)^2)}

\mathsf{=8R^2:(4R^2+4R^2)}

\mathsf{=8R^2:8R^2}

\mathsf{=1:1}

\underrline{\textbf{Answer:}}

\textsf{Option (c) is correct}

Answered by pravinnk
4

Answer:

option: c

Step-by-step explanation:

given that the

square of the greatest side to sum of the squares of other two sides

by assuming√2 was the greatest side and other two sides were 1:1 as given by the question

we can say that

√2 square = sum of (1 +1)

2:2

=1:1

triangle has 3 sides

Similar questions