Math, asked by subodhshekhar794, 1 month ago

if the ratio of sum of n terms of two district A.P is as Sn and s'n is (n plus 5 by 2n minus 3 given below ) then find the ratio of 7th term ratio T7 / Ť7

 \binom{n + 5}{2n - 3}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

For the first AP series,

  • First term of AP is a

  • Common difference of an AP is d

  • Number of terms is n

For the second AP series

  • First term of AP is A

  • Common difference of an AP is D

  • Number of terms is n

According to statement

\rm :\longmapsto\:\dfrac{S_n}{S_n'}  = \dfrac{n + 5}{2n - 3}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, using this, we get

\rm :\longmapsto\:\dfrac{\dfrac{n}{2} [2a + (n - 1)d]}{\dfrac{n}{2}[2A + (n - 1)D] }  = \dfrac{n + 5}{2n - 3}

\rm :\longmapsto\:\dfrac{2a + (n - 1)d}{2A + (n - 1)D}  = \dfrac{n + 5}{2n - 3}

\rm :\longmapsto\:\dfrac{a + (n - 1)\dfrac{d}{2} }{A + (n - 1)\dfrac{D}{2} }  = \dfrac{n + 5}{2n - 3}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

 \purple{\rm :\longmapsto\:Replace \: \dfrac{n - 1}{2} \: by \: 6, i.e. \: n \: by \: 13\: we \: get \: }

\rm :\longmapsto\:\dfrac{a + 6d }{A  + 6D}  = \dfrac{13 + 5}{26 - 3}

\rm :\longmapsto\:\dfrac{T_7}{T_7'}  = \dfrac{18}{23}

Answered by OoAryanKingoO78
0

Answer:

\large\underline{\sf{Solution-}}

Let assume that

For the first AP series,

First term of AP is a

Common difference of an AP is d

Number of terms is n

For the second AP series

First term of AP is A

Common difference of an AP is D

Number of terms is n

According to statement

\rm :\longmapsto\:\dfrac{S_n}{S_n'}  = \dfrac{n + 5}{2n - 3}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, using this, we get

\rm :\longmapsto\:\dfrac{\dfrac{n}{2} [2a + (n - 1)d]}{\dfrac{n}{2}[2A + (n - 1)D] }  = \dfrac{n + 5}{2n - 3}

\rm :\longmapsto\:\dfrac{2a + (n - 1)d}{2A + (n - 1)D}  = \dfrac{n + 5}{2n - 3}

\rm :\longmapsto\:\dfrac{a + (n - 1)\dfrac{d}{2} }{A + (n - 1)\dfrac{D}{2} }  = \dfrac{n + 5}{2n - 3}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

 \purple{\rm :\longmapsto\:Replace \: \dfrac{n - 1}{2} \: by \: 6, i.e. \: n \: by \: 13\: we \: get \: }

\rm :\longmapsto\:\dfrac{a + 6d }{A  + 6D}  = \dfrac{13 + 5}{26 - 3}

\rm :\longmapsto\:\dfrac{T_7}{T_7'}  = \dfrac{18}{23}

Similar questions