Math, asked by yadavumesh84459, 10 months ago

If the ratio of sum of p terms and q terms of an A.P. is p^2:q^2, prove that the common difference is twice the first term.

Answers

Answered by Alcaa
9

Answer:

It has been proved below that common difference is twice the first term.

Step-by-step explanation:

We are given that the ratio of sum of p terms and q terms of an A.P. is p^{2} :q^{2} .

The formula for sum of n terms of an AP is given by;

                     S_n = \frac{n}{2}[2a+(n-1)d]

Given ratio is;

                         ⇒  \frac{\frac{p}{2} [2a+(p-1)d]}{\frac{q}{2} [2a+(q-1)d]} = \frac{p^{2} }{q^{2} }

                         ⇒  \frac{ 2a+(p-1)d}{ 2a+(q-1)d} = \frac{p^{2} }{q^{2} }* \frac{q}{p}

                         ⇒  \frac{ 2a+(p-1)d}{ 2a+(q-1)d} = \frac{p }{q }

                         ⇒  q*[2a+(p-1)d] = p*[2a+(q-1)d]

                         ⇒  2aq + pdq-dq = 2ap+pqd-pd

                         ⇒ q[2a-d] = p[2a-d]

                         ⇒ p[2a-d] - q[2a-d] = 0

                         ⇒ (p - q)(2a-d) = 0

This means either (p - q) = 0 or (2a - d) = 0

Since, (2a - d) = 0 so d = 2a .

Hence, it is proved that the common difference is twice the first term.

Similar questions