Math, asked by agarwalharsh413, 1 year ago

If the ratio of sum of the first m and n terms of an ap is m^2 : n^2, show that the ratio of its mth and nth terms is (2m-1) and (2n-1).

Answers

Answered by Mylo2145
8

  \sf\frac{s_{m}}{s_{n}} =  \frac{ \frac{ \cancel{m}}{ \cancel{2}} (2a + (m - 1)d)}{ \frac{ \cancel{n}}{ \cancel{2}}(2a + (n - 1)d)} =  \frac{ {m}^{ \cancel{2}} }{ {n}^{ \cancel{2}} }  \\  \\  \sf \frac{2a + md - d}{2a + nd - d}  =  \frac{m}{n}  \\  \\ \sf 2am +  \cancel{mnd} - dm = 2an +  \cancel{mnd} - dn \\  \\  \sf  2am - 2an - dm + dn = 0 \\  \\ \sf 2a(m - n) - d(m - n) = 0 \\  \\ \sf (2a - d)(m - n) = 0 \\  \\ \sf 2a - d = 0 \\  \\ \sf d = 2a

 \sf a_m = a + (m - 1)d \\  \\ \sf  = a  + (m - 1)2a \\  \\  =  \sf a + 2am - 2a  \\  \\  =  \sf a(2m - 1)

 \sf a_n = a + (n - 1)d \\  \\  \sf = a + (n - 1)2a \\  \\  =  \sf a + 2an - 2a \\  \\   =  \sf a(2n - 1)

 \sf \frac{a_m}{a_n}  =  \frac{ \cancel{a}(2m - 1)}{ \cancel{a}(2n - 1)} \\  \\  \sf \frac{a_{m} }{a_{n}} =  \frac{(2m - 1)}{(2n - 1)}

Hence, proved.


satyamsharma2: ye wala to mene hi solve kia tha...
satyamsharma2: ye question mam ne dia tha
Mylo2145: Han han XD
Similar questions