Math, asked by mranveer870, 21 days ago

If the ratio of the areas of two squares is 225:256, then the ratio of their perimeters is :​

Answers

Answered by Argy
3

Sorry for a little hazy pic. The answer is 15:16. Click to view full photo.

Please mark as brainliest it will make my day

Attachments:
Answered by Anonymous
61

 \small \bigstar \small \sf \purple{ \: Solution:- }

 \:

 \small \purple \bigstar \small \sf{ \:  Let  \: side  \: of   \: squares  \:  are} \purple{ \:  a \:  and \: b}{ \: respectively }

 \:

 \small\bigstar\small \sf \purple{ \: We \:  know  \: that \:  area \:  of  \: square \: :-  \:  } \\ \sf{side × side}

 \:

 \small \purple \bigstar\small \sf{  \: Ratio  \: of  \: area \:  of  \: two  \: squares = 225:256 }

   \purple\leadsto\sf{  \frac{ {x}^{2} }{ {y}^{2} } =  \frac{225}{256}  }

    \purple\leadsto\sf{  \frac{  x }{ y } =  \frac{ \sqrt{225} }{ \sqrt{256} }  }

   \purple\leadsto \sf{  \frac{  x }{ y } =  \frac{ 15 }{ 16}  }

 \:

\small \sf { \: \:  \:  \:  \:   \:  \:  \:  \:  \:\small \bigstar \:  \purple{ Comparing \:  both  \: sides:-  } \:  } \\  \small\sf{  \:  \:  \:  \:  \:  \: x = 15 \: and \: y \:  = 16}

 \:

\small \bigstar \small \sf \purple{  \: Now, Find \:  ratio \:  of  \: their  \: perimeters }

 \:

\small \bigstar \small \sf \purple{ \: We \:  know  \: that \:  perimeter \:  of  \: square \: :-  \:  } \\ \sf{4 × side}

 \:

\small \purple \bigstar \small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares = 4x:4y  }

\small \purple \bigstar \small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  \frac{4x}{4y}   }

 \:

 \small  \bigstar\small \sf \purple{  \: Substitute  \: the  \: value  \: of \:  x  \: and  \: y  }

 \:

 \small \purple \bigstar\small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  \frac{4 \times 15}{4 \times 16}   }

\small \purple \bigstar \small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  \frac{60}{64}   }

\small \purple \bigstar \small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  \cancel \frac{60}{64}   }

 \small \purple \bigstar\small \sf{  \: Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  \frac{15}{16}   }

 \small\bigstar\small \sf \purple{ \:  Ratio  \: of  \: perimeter \:  of  \: two  \: squares}{  \: =  15:16   }

Similar questions