Math, asked by awdheshbgs1234, 3 months ago

if the ratio of the base and the hypotenuse of a right angled triangle is 4:5 , and the perimeter of the triangle is 48cm find its area​

Answers

Answered by Anonymous
10

GiveN:-

The ratio of the base and the hypotenuse of a right angled triangle is 4:5 , and the perimeter of the triangle is 48cm.

To FinD:-

The area.

SolutioN:-

Let the base be 4x and hypotenuse be 5x and side be s.

Now,

By Pythagoras Theorem,

\large{\green{\underline{\boxed{\bf{(hypo)^2=(side)^2+(base)^2}}}}}

where,

  • Hypo is hypotenuse = 5x
  • Base is 4x
  • Side is s.

Putting the values,

\large\implies{\sf{(5x)^2=(s)^2+(4x)^2}}

\large\implies{\sf{25x^2=s^2+16x^2}}

\large\implies{\sf{25x^2-16x^2=s^2}}

\large\implies{\sf{9x^2=s^2}}

By square rooting both the sides,

\large\implies{\sf{\sqrt{9x}=s}}

\large\implies{\sf{3x=s}}

\large\therefore\boxed{\bf{Side=3x.}}

Therefore, the sides are 4x, 5x, 3x.

The perimeter is 48 cm.

We know that the measures of all the 3 sides of a triangle sum up to its Perimeter.

\large\implies{\sf{4x+5x+3x=48}}

\large\implies{\sf{12x=48}}

\large\implies{\sf{x=\dfrac{48}{12}}}

\large\implies{\sf{x=\dfrac{\cancel{48}}{\cancel{12}}}}

\large\therefore\boxed{\bf{x=4}}

The sides are:-

  1. 4x = 4 × 4 = 16 cm
  2. 5x = 5 × 4 = 20 cm
  3. 3x = 3 × 4 = 12 cm

VerificatioN:-

\large\implies{\sf{16+20+12=48}}

\large\implies{\sf{48=48}}

\large\therefore\boxed{\bf{LHS=RHS.}}

Now the AreA:-

We know that area of triangle is,

\large{\green{\underline{\boxed{\bf{Area=\dfrac{1}{2}\times\:Base\times\:Height}}}}}

where,

  • Base = 16 cm
  • Height = 12 cm

Putting the values,

\large\implies{\sf{Area=\dfrac{1}{2}\times16\times12}}

\large\implies{\sf{Area=\dfrac{1}{\cancel{2}}\times\cancel{16}\times12}}

\large\implies{\sf{Area=8\times12}}

\large\therefore\boxed{\bf{Area=96\:cm^2.}}

The area of the triangle is 96 cm².

Answered by Anonymous
22

  \implies\huge \sf \underline \red{Answer}

\:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \pink{ \sf{  area = 96 {cm}^{2}  }}}}}}

__________________________________________________

 \implies \huge \sf  \underline\blue{Given : }

  • base and hypotenuse = 4: 5
  • perimeter = 48

 \implies \sf \huge \underline \pink{To  \: find : }

  • Area of triangle

 \implies \sf \huge \underline \orange{solution : }

  • let us take base and hypotenuse be 4x and 5x

 \star \sf \underline{ \: now \: take \: phytagoras \: theorem : }

  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \sf{ {h}^{2} =  {p}^{2}  +  {b}^{2}  \: }}}}}}

so,

  • hypotenuse is 4x
  • base is 5x

 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies\sf{ {p}^{2} =  {5x}^{2} -  {4x}^{2}}

 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf{ {p}^{2} =  {25x}^{2} -  {16x}^{2}}

 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf{ {p} =  { \sqrt{ {9}^{2} } }}

 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf{ {p =3}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \sf{p = 3 \: }}}}}}

we know that,

 \sf \implies{perimeter = sum \: of \: all \: sides}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \blue{3x + 4x + 5x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \blue{12x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  \blue{given \: perimeter = 48}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \blue{12x = 48}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \blue{x =  \dfrac{48}{12} }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies \blue{x = 4cm}

Now,

 \star  \sf \underline{putting \: the \: value \: of \: x}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{base = 4x}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{4(4) = 16cm}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{hypotenuse = 5x}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{3(4) = 12cm}

 \star \implies \sf \underline{now \: formula}

we know that area of triangle formula,

  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \red{ \sf{  \dfrac{1}{2} \times base \times height  \: }}}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{ \dfrac{1}{2} \times 16 \times 12 }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies{area = 96 {cm}^{2} }

 \implies \sf \underline \purple{Area = 96 {cm}^{2}}

Similar questions