if the ratio of the roots of the equation .
p:q,. prove that:-
√p/q + √q/p + √n/ l = 0
no spam :-
don't copy ,giving incorrect ans .is reported.....
Answers
Proof :
The given equation is
lx² + nx + n = 0 .....(1)
The ratio of roots of (1) is p : q
Let, r (≠ 0) be the common multiple
Then, the roots be pr and qr
By the relation between roots and coefficients, from (1), we get
pr + qr = - n/l .....(2)
pr * qr = n/l .....(3)
From (2) and (3), we get
pr * qr = - (pr + qr)
⇒ pqr = - (p + q) , since r ≠ 0
⇒ r = - (p + q)/(pq)
⇒ r = - (1/q + 1/p)
From (2), we get
(p + q) {- (1/q + 1/p)} = - n/l
⇒ - p/q - 1 - 1 - q/p = - n/l
⇒ p/q + 2 + q/p - n/l = 0
⇒ (√p/√q)² + 2 (√p/√q) (√q/√p) + (√p/√q)² - (√n/√l)² = 0
⇒ {(√p/√q) + (√q/√p)}² - (√n/√l)² = 0
⇒ {(√p/√q) + (√q/√p) + (√n/√l)}
{(√p/√q) + (√q/√p) - (√n/√l)} = 0
Either {(√p/√q) + (√q/√p) + (√n/√l)} = 0
or, {(√p/√q) + (√q/√p) - (√n/√l)} = 0
Taking the first term, we get
√(p/q) + √(q/p) + √(n/l) = 0
Hence, proved.
Step-by-step explanation:
Given Equation is lx² + nx + n = 0
On comparing with ax² + bx + c = 0, we get
a = l, b = n, c = n
Let, roots of the equation are α and β.
(i) Sum of roots:
⇒ α + β = -b/a
⇒ α + β = -n/l
(ii) Product of roots:
⇒ αβ = c/a
⇒ αβ = n/l
(iii) Ratio of roots:
α/β = p/q
LHS:
RHS
Hope it helps