Math, asked by sikheriyab00194, 11 months ago

If the ratio of the sum of m term and n term of an ap is m²:n², then prove that d=2a

Answers

Answered by ItzAditt007
2

AnswEr:-

Given:-

  • Ratio of sum of n terms and n terms of an AP = m² : n².

To Prove:-

  • d = 2a.

Formula Used:-

\tt \blue{\leadsto{ \boxed{ \red{ \bf  S_x =  \frac{a}{2} \bigg(2a + (x - 1)d \bigg).}}}}

Where,

  • \tt S_x = Sum of x terms.

  • a = First term.

  • x = Number of terms.

  • d = Common Difference

So Here,

  • \tt S_x = S_m\:\:And\:\:S_n.

  • a = a (lets assume as per question).

  • x = m and n.

  • d = d (lets assume as per question).

Now,

By putting the above values in formula we get,

\tt\longrightarrow \boxed{ \bf S_m =  \frac{m}{2} \bigg(2a + (m - 1)d \bigg)}...(1)

And,

\tt\longrightarrow \boxed{ \bf S_n =  \frac{n}{2} \bigg(2a + (n - 1)d \bigg)}...(2)

Therefore ATQ:-

\bf\mapsto \dfrac{S_m}{S_n}  = \dfrac{ {m}^{2} }{ {n}^{2} }.

So from (1) and (2) we get,

\tt\mapsto \dfrac{ \dfrac{m}{ \cancel2} \bigg(2a + (m - 1)d \bigg) }{ \dfrac{n}{ \cancel2} \bigg(2a + (n - 1)d \bigg) }   =  \dfrac{ {m}^{2} }{ {n}^{2} }

\tt\mapsto\dfrac{m \bigg(2a + (m - 1)d \bigg)}{n \bigg(2a + (n - 1)d \bigg)} =  \dfrac{ {m}^{2} }{ {n}^{2} }  .

\tt\mapsto \dfrac{2a + (m - 1)d}{2a + (n - 1)d}  =  \dfrac{ {m}^{2} }{ {n}^{2} }  \times  \dfrac{n}{m} .

\tt\mapsto \dfrac{2a + (m - 1)d}{2a + (n - 1)d}  =  \dfrac{m}{n} .

\tt\mapsto n \bigg(2a + (m - 1)d \bigg) = m \bigg(2a + (n - 1)d \bigg).

\tt\mapsto n(2a + nd - d) = m(2a + md - d).

\tt\mapsto2an  \:  \: \cancel{ + mnd} \:  \:  - nd = 2am \:  \:  \cancel{ + mnd} \:  \:  - md.

\tt\mapsto2an - nd = 2am - md.

\tt\mapsto md - nd = 2am - 2an.

\tt\mapsto d  \:  \: \cancel{(m - n)} = 2a \:  \:  \cancel{(m - n)}.

 \tt  \large\red{\mapsto{ \boxed{ \blue{ \bf d = 2a.}}}}

...Hence Proved...

Similar questions