Math, asked by sikheriyab00194, 9 months ago

If the ratio of the sum of m term and n term of an ap is m²:n², then prove that d=2a

Answers

Answered by TheValkyrie
8

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

  • Ratio of sum of m terms and n terms of an ap is m² : n²

\Large{\underline{\underline{\bf{To\:prove:}}}}

  • d = 2a

\Large{\underline{\underline{\bf{Proof:}}}}

→ Sum of n terms of an AP is given by the formula

S_n=\dfrac{n}{2}( 2a+(n-1)d) ----equation 1

→ By given,

\dfrac{S_m}{S_n} =\dfrac{m^{2} }{n^{2} }

→ Substituting equation 1

\dfrac{\dfrac{m}{2}(2a+(m-1)d) }{\dfrac{n}{2}(2a+(n-1)d) }=\dfrac{m^{2} }{n^{2} }

→ Cancelling 2 on both numerator and denominator

\dfrac{m(2a+(m-1)d)}{n(2a+(n-1)d)} =\dfrac{m^{2} }{n^{2} }

→ Taking m/n to RHS

\dfrac{2a+(m-1)d}{2a+(n-1)d} =\dfrac{m^{2} }{n^{2} } \times \dfrac{n}{m}

\dfrac{2a+(m-1)d}{2a+(n-1)d} =\dfrac{m}{n}

→ Cross multiplying

n(2a+(m-1)d)=m(2a+(n-1)d)

2an+(m-1)dn = 2am+(n-1)dm

(m-1)dn-(n-1)dm=2am-2an

dmn-dn-dmn+dm=2a(m-n)

→ Cancelling dmn

dm-dn=2a(m-n)

d(m-n)=2a(m-n)

→ Cancelling m - n on both sides

d = 2a

Hence proved.

\Large{\underline{\underline{\bf{Notes:}}}}

→ Sum of n terms is given by the equations

S_n=\dfrac{n}{2} (a_1+a_n)

S_n=\dfrac{n}{2}( 2a+(n-1)d)

Answered by amansharma264
4

EXPLANATION.

  • GIVEN

ratio of sum of m term and n term of

an Ap = m²:n²

Prove that d = 2a.

According to the question,

Formula of sum of Nth term of an Ap.

   \implies{\boxed{ \green{\bold{s_{n} \:  =  \frac{n}{2}  (2a \:   + (n \:  - 1)d) }}}}

  \bold{\implies{ s_{m} \:  =  {m}^{2} } }

 \bold{\implies{ s_{n} \:  =  {n}^{2} }}

Therefore,

 \bold{\implies{ \frac{ \frac{m}{2} (2a \:  + (m \:  - 1)d)}{ \frac{n}{2}(2a \:  + (n \:  - 1)d) } } =  \frac{ {m}^{2} }{ {n}^{2} } }

 \bold{\implies{ \frac{2a \:  +  \: ( \: m  \: -  \: 1)d}{2a \:  +  \: (n \:  - 1)d} } =  \frac{m}{n}}

=> n [ 2a + ( m - 1 )d ] = m [ 2a + ( n - 1 )d ]

=> n [ 2a + md - d ] = m [ 2a + nd - d ]

=> 2an + mnd - nd = 2am + mnd - md

=> 2an - 2am = nd - md

=> 2a ( n - m) = d ( n - m)

=> 2a = d

=> HENCE PROVED.

Similar questions